Publications

Results 1–50 of 109
Skip to search filters

Performing a multi-unit level-3 PSA with MACCS

Nuclear Engineering and Technology

Bixler, Nathan E.; Kim, Sung y.

MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.

More Details

MELCOR Code Change History (Revision 14959 to 18019)

Humphries, Larry; Phillips, Jesse P.; Schmidt, Rodney C.; Beeny, Bradley A.; Louie, David L.; Bixler, Nathan E.

This document summarily provides brief descriptions of the MELCOR code enhancement made between code revision number 14959and 18019. Revision 14959 represents the previous official code release; therefore, the modeling features described within this document are provided to assist users that update to the newest official MELCOR code release, 18019. Along with the newly updated MELCOR Users Guide and Reference Manual, users are aware and able to assess the new capabilities for their modeling and analysis applications.

More Details

SOARCA uncertainty analysis of a short-term station blackout accident at the Sequoyah nuclear power plant

Annals of Nuclear Energy

Bixler, Nathan E.; Dennis, Matthew L.; Ross, Kyle R.; Osborn, Douglas M.; Gauntt, Randall O.; Wagner, K.C.; Ghosh, S.T.; Hathaway, A.G.; Esmaili, H.

The U.S. Nuclear Regulatory Commission initiated the state-of-the-art reactor consequence analyses (SOARCA) project to develop realistic estimates of the offsite radiological health consequences for potential severe reactor accidents. The SOARCA analysis of an ice condenser containment plant was performed because its relatively low design pressure and its reliance on igniters make it potentially susceptible to early containment failure from hydrogen combustion during a severe accident. The focus was on station blackout accident scenarios where all alternating current power is lost. Accident progression calculations used the MELCOR computer code and offsite consequence analyses were performed with MACCS. The analysis included more than 500 MELCOR and MACCS simulations to account for uncertainty in important accident progression and offsite consequence input parameters. Consequences from severe nuclear power plant accidents modeled in SOARCA are smaller than previously calculated. The delayed releases calculated provide more time for emergency response actions. The results show that early containment failure is very unlikely, even without successful use of igniters. The modeled behavior of safety valves is very important to this conclusion, but there is sparse data and a lack of established expert consensus on the failure rates under severe accident conditions. Even for scenarios resulting in early containment failure, the calculated individual latent fatal cancer risks are very small. Early and latent-cancer fatality risks are one focus of this paper. Regression results showing the most influential parameters are also discussed.

More Details

State-of-the-art reactor consequence analyses project uncertainty analyses: Insights on offsite consequences

PSA 2019 - International Topical Meeting on Probabilistic Safety Assessment and Analysis

Tina Ghosh, S.; Esmaili, Hossein; Hathaway, Alfred; Bixler, Nathan E.; Brooks, Dusty M.; Osborn, Douglas M.; Wagner, Kenneth C.

This paper is the third paper in a special session on the State-of-the-Art Reactor Consequence Analyses (SOARCA) Uncertainty Analyses (UAs), and summarizes offsite consequence insights from the three SOARCA UAs. The U.S. Nuclear Regulatory Commission (NRC) with Sandia National Laboratories has completed three UAs for particular station blackout scenarios as part of the SOARCA research project: for a boiling-water reactor with a Mark I containment in Pennsylvania State (Peach Bottom), for a pressurized-water reactor (PWR) with an ice condenser containment in Tennessee State (Sequoyah), and for a PWR with subatmospheric large dry containment in Virginia State (Surry). The Sequoyah and Surry SOARCA UAs focused on an unmitigated short-term station blackout (SBO) scenario involving an immediate loss of offsite and onsite AC power. In the Surry UA, induced steam generator tube rupture was also modeled. The Sequoyah study focused on issues unique to the ice condenser containment and the potential for early containment failure due to hydrogen combustion. The Peach Bottom UA focused on an unmitigated long-term SBO scenario, where battery power is initially available. The MELCOR Accident Consequence Code System (MACCS) suite of codes was used for offsite radiological consequence modeling. This paper presents the offsite consequence results, individual latent cancer fatality risk and the individual early fatality risk, for the three SOARCA UAs and summarizes some of the insights and features of the analyses.

More Details

SecPop Version 4: Sector Population Land Fraction and Economic Estimation Program: Users? Guide Model Manual and Verification Report

Weber, scott W.; Bixler, Nathan E.; McFadden, Katherine L.

In 1973 the U.S. Environmental Protection Agency (EPA) developed SecPop to calculate population estimates to support a study on air quality. The Nuclear Regulatory Commission (NRC) adopted this program to support siting reviews for nuclear power plant construction and license applications. Currently SecPop is used to prepare site data input files for offsite consequence calculations with the MELCOR Accident Consequence Code System (MACCS). SecPop enables the use of site-specific population, land use, and economic data for a polar grid defined by the user. Updated versions of SecPop have been released to use U.S. decennial census population data. SECPOP90 was released in 1997 to use 1990 population and economic data. SECPOP2000 was released in 2003 to use 2000 population data and 1997 economic data. This report describes the current code version, SecPop version 4.3, which uses 2010 population data and both 2007 and 2012 economic data. It is also compatible with 2000 census and 2002 economic data. At the time of this writing, the current version of SecPop is 4.3.0, and that version is described herein. This report contains guidance for the installation and use of the code as well as a description of the theory, models, and algorithms involved. This report contains appendices which describe the development of the 2010 census file, 2007 county file, and 2012 county file. Finally, an appendix is included that describes the validation assessments performed.

More Details

Sequoyah SOARCA uncertainty analysis of a STSBO accident

PSAM 2018 - Probabilistic Safety Assessment and Management

Bixler, Nathan E.; Dennis, Matthew L.; Brooks, Dusty M.; Osborn, Douglas M.; Ghosh, S.T.; Hathaway, Alfred

The U.S. Nuclear Regulatory Commission initiated the state-of-the-art reactor consequence analyses (SOARCA) project to develop realistic estimates of the offsite radiological health consequences for potential severe reactor accidents. The SOARCA analysis of an ice condenser containment plant was performed because its relatively low design pressure and reliance on igniters makes it potentially susceptible to early containment failure from hydrogen combustion during a severe accident. The focus was on station blackout accident scenarios where all alternating current power is lost. Accident progression calculations used the MELCOR computer code and offsite consequence analyses were performed with MACCS. The analysis included more than 500 MELCOR and MACCS simulations to account for uncertainty in important accident progression and offsite consequence input parameters. Consequences from severe nuclear power plant accidents modeled in this and previous SOARCA analyses are smaller than calculated in earlier studies. The delayed releases calculated provide more time for emergency response actions. The results show that early containment failure is very unlikely, even without successful use of igniters. However, these results are dependent on the distributions assigned to safety valve failure-to-close parameters, and considerable uncertainty remains on the true distributions for these parameters due to very limited test data. Even for scenarios resulting in early containment failure, the calculated individual latent fatal cancer risks are very small. Early and latent-cancer fatality risks are one focus of this paper. Regression results showing the most influential parameters are also discussed.

More Details

State-of-the-art reactor consequence analyses project: Uncertainty analysis of a potential unmitigated short-term station blackout of the surry nuclear power station

Risk, Reliability and Safety: Innovating Theory and Practice - Proceedings of the 26th European Safety and Reliability Conference, ESREL 2016

Ghosh, S.T.; Ross, Kyle R.; Bixler, Nathan E.; Weber, S.J.; Sallaberry, C.J.; Jones, J.A.

The evaluation of accident phenomena and the potential offsite consequences of severe nuclear reactor accidents has been the subject of considerable research by the U.S. Nuclear Regulatory Commission (NRC) over the last several decades. As a result, capability exists to conduct more detailed, integrated, and realistic analyses of potential severe accidents at nuclear power reactors. Through the application of modern analysis tools and techniques, the State-of-the-Art Reactor Consequence Analyses (SOARCA) project was completed in 2012. This project developed a body of knowledge regarding the realistic outcomes of postulated severe nuclear reactor accidents with best-estimate analyses of selected accident scenarios at the Peach Bottom Atomic Power Station (Peach Bottom), a boiling-water reactor (BWR), and the Surry Power Station (Surry), a pressurized-water reactor (PWR). The SOARCA project continued with an integrated uncertainty analysis (UA) of a potential unmitigated long term station blackout (LTSBO) accident at Peach Bottom completed in 2013. This Peach Bottom UA provided important insights regarding how uncertainties in selected severe accident progression and consequence parameters affect the results of the BWR LTSBO analysis. A Surry integrated UA has just been completed to provide similar insights for a potential PWR short-term station blackout (STSBO).

More Details
Results 1–50 of 109
Results 1–50 of 109