NORMALIZED DOSE ASSESSMENT AND RADIONUCLIDE SENSITIVITY ANALYSIS FOR A HIGH TEMPERATURE GAS REACTOR MECHANISTIC SOURCE TERM
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report is a functional review of the radionuclide containment strategies of fluoride-salt-cooled high temperature reactor (FHR), molten salt reactor (IVISR) and high temperature gas reactor (HTGR) systems. This analysis serves as a starting point for further, more in-depth analyses geared towards identifying phenomenological gaps that still exist, preventing the creation of a mechanistic source term for these reactor types. As background information to this review, an overview of how a mechanistic source term is created and used for consequence assessment necessary for licensing is provided. How mechanistic source term is used within the LMP is also provided. Third, the characteristics of non-LWR mechanistic source terms are examined This report does not assess the viability of any software system for use with advanced reactor designs, but instead covers system function requirements. Future work within the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program will address such gaps.
Abstract not provided.
The Terry Turbine Expanded Operating Band Project is currently conducting testing at Texas A&M University, and the resulting data has been incorporated into MELCOR models of the Terry turbines used in nuclear power plants. These improved models have produced improvements in the Fukushima Daiichi Unit 2 simulations while providing new insights into the behavior of the plant. The development of future experimental test efforts is ongoing. Development of and refinements to the plans for full-scale steam and steam-water turbine ingestion testing has been performed. These full-scale steam-based tests will complement the testing occurring at Texas A&M University, and will resolve the remaining questions regarding scale or working fluid. Planning work has also begun for future testing intended to explore the uncontrolled RCIC self-regulation theorized to have occurred in Fukushima Daiichi Unit 2.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Outline points are: Review what is known from experiments and how codes are modeling phenomena; Materials interactions are very important and key interactions will be identified and discussed; Chronology of damage progression roughly follows in order of increasing melting/liquefaction temperatures; Examine a plausible sequence to explain robotic visual examinations; Highlight MELCOR modeling observations; Highlight potential decommissioning phase data collection needs; and, Knowledge advance is iterative process of reconciling observations with code predictions, improving code models, and comparing to emerging new observations.
Abstract not provided.
Abstract not provided.