Publications

Results 1–25 of 42
Skip to search filters

UT Austin's 2022 Sandia Day (Summary Report)

Miner, Nadine E.

On March 30th and 31st, 2022, the University of Texas at Austin (UT) Office of the Vice President for Research (OVPR) hosted Sandia National Laboratories (Sandia) for “Sandia Day at UT Austin” to understand the status of the strategic partnership and explore opportunities for partnership growth. The event brought together more than 115 UT and Sandia participants including executive leadership, researchers, faculty, staff, and students. Sandia Day primarily consisted of a half-day leadership meeting, a research poster session and networking event, and three break-out sessions focused on strategic priority areas: Microelectronics, Energy and Climate Security, and High-Performance and Edge Computing. Appendix A contains the full Sandia Day agenda. Additional meetings and workshops (adjunct meetings) were held in conjunction with Sandia Day to maximize partnership exploration. Adjunct meetings were Hypersonics, Decarbonization, Disinformation, and Battery Workshops. A summary of Sandia Day events, sessions, and meetings follows.

More Details

Sandia Academic Alliance Program Collaboration Report: 2020-2021 Accomplishments

Peebles, Diane E.; Horton, Rebecca D.; Claudet, Andre C.; Miner, Nadine E.; Patel, Kamlesh P.; Windsor, Matthew W.; Stites, Mallory C.; Treece, Amy T.

University partnerships play an essential role in sustaining Sandia’s vitality as a national laboratory. The SAA is an element of Sandia’s broader University Partnerships program, which facilitates recruiting and research collaborations with dozens of universities annually. The SAA program has two three-year goals. SAA aims to realize a step increase in hiring results, by growing the total annual inexperienced hires from each out-of-state SAA university. SAA also strives to establish and sustain strategic research partnerships by establishing several federally sponsored collaborations and multi-institutional consortiums in science & technology (S&T) priorities such as autonomy, advanced computing, hypersonics, quantum information science, and data science. The SAA program facilitates access to talent, ideas, and Research & Development facilities through strong university partnerships. Earlier this year, the SAA program and campus executives hosted John Myers, Sandia’s former Senior Director of Human Resources (HR) and Communications, and senior-level staff at Georgia Tech, U of Illinois, Purdue, UNM, and UT Austin. These campus visits provided an opportunity to share the history of the partnerships from the university leadership, tours of research facilities, and discussions of ongoing technical work and potential recruiting opportunities. These visits also provided valuable feedback to HR management that will help Sandia realize a step increase in hiring from SAA schools. The 2020-2021 Collaboration Report is a compilation of accomplishments in 2020 and 2021 from SAA and Sandia’s valued SAA university partners.

More Details

Computing with spikes: The advantage of fine-grained timing

Neural Computation

Verzi, Stephen J.; Rothganger, Fredrick R.; Parekh, Ojas D.; Quach, Tu-Thach Q.; Miner, Nadine E.; Vineyard, Craig M.; James, Conrad D.; Aimone, James B.

Neural-inspired spike-based computing machines often claim to achieve considerable advantages in terms of energy and time efficiency by using spikes for computation and communication. However, fundamental questions about spike-based computation remain unanswered. For instance, how much advantage do spike-based approaches have over conventionalmethods, and underwhat circumstances does spike-based computing provide a comparative advantage? Simply implementing existing algorithms using spikes as the medium of computation and communication is not guaranteed to yield an advantage. Here, we demonstrate that spike-based communication and computation within algorithms can increase throughput, and they can decrease energy cost in some cases. We present several spiking algorithms, including sorting a set of numbers in ascending/descending order, as well as finding the maximum or minimum ormedian of a set of numbers.We also provide an example application: a spiking median-filtering approach for image processing providing a low-energy, parallel implementation. The algorithms and analyses presented here demonstrate that spiking algorithms can provide performance advantages and offer efficient computation of fundamental operations useful in more complex algorithms.

More Details

Neurogenesis deep learning: Extending deep networks to accommodate new classes

Proceedings of the International Joint Conference on Neural Networks

Draelos, Timothy J.; Miner, Nadine E.; Lamb, Christopher L.; Cox, Jonathan A.; Vineyard, Craig M.; Carlson, Kristofor D.; Severa, William M.; James, Conrad D.; Aimone, James B.

Neural machine learning methods, such as deep neural networks (DNN), have achieved remarkable success in a number of complex data processing tasks. These methods have arguably had their strongest impact on tasks such as image and audio processing - data processing domains in which humans have long held clear advantages over conventional algorithms. In contrast to biological neural systems, which are capable of learning continuously, deep artificial networks have a limited ability for incorporating new information in an already trained network. As a result, methods for continuous learning are potentially highly impactful in enabling the application of deep networks to dynamic data sets. Here, inspired by the process of adult neurogenesis in the hippocampus, we explore the potential for adding new neurons to deep layers of artificial neural networks in order to facilitate their acquisition of novel information while preserving previously trained data representations. Our results on the MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes lower and upper case letters and digits, demonstrate that neurogenesis is well suited for addressing the stability-plasticity dilemma that has long challenged adaptive machine learning algorithms.

More Details

A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications

Biologically Inspired Cognitive Architectures

James, Conrad D.; Aimone, James B.; Miner, Nadine E.; Vineyard, Craig M.; Rothganger, Fredrick R.; Carlson, Kristofor D.; Mulder, Samuel A.; Draelos, Timothy J.; Faust, Aleksandra; Marinella, Matthew J.; Naegle, John H.; Plimpton, Steven J.

Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.

More Details

Simulating smoking behaviors based on cognition-determined, opinion-based system dynamics

Proceedings - Winter Simulation Conference

Naugle, Asmeret B.; Miner, Nadine E.; Aamir, Munaf S.; Jeffers, Robert F.; Verzi, Stephen J.; Bernard, Michael L.

We created a cognition-focused system dynamics model to simulate the dynamics of smoking tendencies based on media influences and communication of opinions. We based this model on the premise that the dynamics of attitudes about smoking can be more deeply understood by combining opinion dynamics with more in-depth psychological models that explicitly explore the root causes of behaviors of interest. Results of the model show the relative effectiveness of two different policies as compared to a baseline: A decrease in advertising spending, and an increase in educational spending. The initial results presented here indicate the utility of this type of simulation for analyzing various policies meant to influence the dynamics of opinions in a population.

More Details
Results 1–25 of 42
Results 1–25 of 42