Metal Hydride Center of Excellence (MHCoE)-Quarterly Progress Report- Quarter 1 FY2009
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conclusions of this paper are: (1) Adsorption/desorption on bulk unmodified zeolites showed isoprene adsorbed by zeolite-L and n-pentane adsorbed by zeolite-Y and ZSM-5; (2) Bulk carbonization is used to passivate zeolite activity toward organic adsorption/decomposition; (3) Based on the bulk modified zeolite separation results, we have determined that the MFI type has the most potential for isoprene enrichment; (4) Modified MFI type membranes are jointly made by Sandia and the Univ. of Colorado. Separation experiments are performed by Goodyear Chemical; (5) Isoprene/n-pentane separations have been demonstrated by using both zeolite membranes and modified bulk zeolites at various temperatures on the Goodyear Pilot-scale unit; and (6) Target zeolite membrane separations values of 6.7% isoprene enrichment have been established by economic analysis calculations by Burns & McDonnell.
This project will attempt to develop a new family of inorganic crystalline porous materials under IMF that will lead to improvement of energy efficiency and productivity via improved separations. Initially this project will be focused on materials for the separation of linear from branched hydrocarbons. However, it is anticipated that the results will provide the basis of knowledge to enable this technology to be applied toward additional hydrocarbon and chemical separations. Industrial involvement from Goodyear and Burns & McDonnell provides needed direction for solving real industrial problems, which will find application throughout the US chemical and petroleum industries.