Publications

13 Results
Skip to search filters

Structure-Property Relationships of Additively Manufactured Ni-Nb Alloys [Slides]

Jones, Morgan J.; Kustas, Andrew K.; DelRio, Frank W.; Pegues, Jonathan W.; Lu, Ping L.; Chandross, M.; Argibay, Nicolas A.

In this work, scratch and nanoindentation testing was used to determine hardness, fracture toughness, strain rate sensitivity, and activation volumes on additively manufactured graded and uniform Ni-Nb bulk specimens. Characterization showed the presence of a two phase system consisting of Ni3Nb and Ni6Nb7 intermetallics. Intermetallics were multimodal in nature, having grain and cell sizes spanning from a few nanometers to 10s of micrometers. The unique microstructure resulted in impressively high hardness, up to 20 GPa in the case of the compositionally graded sample. AM methods with surface deformation techniques are a useful way to rapidly probe material properties and alloy composition space.

More Details

Structure-Property Relationships of Additively Manufactured Ni-Nb Alloys [Slides]

Jones, Morgan J.; Kustas, Andrew K.; DelRio, Frank W.; Pegues, Jonathan W.; Lu, Ping L.; Chandross, M.; Argibay, Nicolas A.

In this work, scratch and nanoindentation testing was used to determine hardness, fracture toughness, strain rate sensitivity, and activation volumes on additively manufactured graded and uniform Ni-Nb bulk specimens. Characterization showed the presence of a two phase system consisting of Ni3Nb and Ni6Nb7 intermetallics. Intermetallics were multimodal in nature, having grain and cell sizes spanning from a few nanometers to 10s of micrometers. The unique microstructure resulted in impressively high hardness, up to 20 GPa in the case of the compositionally graded sample. AM methods with surface deformation techniques are a useful way to rapidly probe material properties and alloy composition space.

More Details

Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys

Scientific Reports

Jones, Morgan J.; Nation, Brendan L.; Wellington-Johnson, John A.; Curry, John C.; Kustas, Andrew K.; Lu, Ping L.; Chandross, M.; Argibay, Nicolas A.

We present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10–6 mm3/N-m), the lowest for any HEA tested in an inert environment where oxidation and the formation of mixed metal-oxide films is mitigated. The combined high wear resistance and low friction are linked to the formation of an ultra-nanocrystalline near-surface layer. The dynamic amorphization model was also used to predict an average high angle grain boundary energy (0.87 J/m2). This value was used to explain cavitation-induced nanoporosity found in the highly deformed surface layer, a phenomenon that has been linked to superplasticity.

More Details

Low friction in bcc metals via grain boundary sliding

Physical Review Materials

Hinkle, Adam R.; Curry, John C.; Lim, Hojun L.; Nation, Brendan L.; Jones, Morgan J.; Wellington-Johnson, John A.; Lu, Ping L.; Argibay, Nicolas A.; Chandross, M.

Low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.

More Details

High-throughput additive manufacturing and characterization of refractory high entropy alloys

Applied Materials Today

Melia, Michael A.; Whetten, Shaun R.; Puckett, Raymond V.; Jones, Morgan J.; Heiden, Michael J.; Argibay, Nicolas A.; Kustas, Andrew K.

Refractory High Entropy Alloys (RHEAs) and Refractory Complex Concentrated Alloys (RCCAs) are high-temperature structural alloys ideally suited for use in harsh environments. While these alloys have shown promising structural properties at high temperatures that exceed the practical limits of conventional alloys, such as Ni-based superalloys, exploration of the complex phase-space of these materials remains a significant challenge. We report on a high-throughput alloy processing and characterization methodology, leveraging laser-based metal additive manufacturing (AM) and mechanical testing techniques, to enable rapid exploration of RHEAs/RCCAs. We utilized in situ alloying and compositional grading, unique to AM processing, to rapidly-produce RHEAs/RCCAs using readily available and inexpensive commercial elemental powders. We demonstrate this approach with the MoNbTaW alloy system, as a model material known for having exceptionally high strength at elevated temperature when processed using conventional methods (e.g., casting). Microstructure analysis, chemical composition, and strain rate dependent hardness of AM-processed material are presented and discussed in the context of understanding the structure-properties relationships of RHEAs/RCCAs.

More Details
13 Results
13 Results