Publications

99 Results
Skip to search filters

Operational and geological controls of coupled poroelastic stressing and pore-pressure accumulation along faults: Induced earthquakes in Pohang, South Korea

Scientific Reports

Chang, Kyung W.; Yoon, Hongkyu Y.; Kim, Young H.; Lee, Moo Y.

Coupled poroelastic stressing and pore-pressure accumulation along pre-existing faults in deep basement contribute to recent occurrence of seismic events at subsurface energy exploration sites. Our coupled fluid-flow and geomechanical model describes the physical processes inducing seismicity corresponding to the sequential stimulation operations in Pohang, South Korea. Simulation results show that prolonged accumulation of poroelastic energy and pore pressure along a fault can nucleate seismic events larger than Mw3 even after terminating well operations. In particular the possibility of large seismic events can be increased by multiple-well operations with alternate injection and extraction that can enhance the degree of pore-pressure diffusion and subsequent stress transfer through a rigid and low-permeability rock to the fault. This study demonstrates that the proper mechanistic model and optimal well operations need to be accounted for to mitigate unexpected seismic hazards in the presence of the site-specific uncertainty such as hidden/undetected faults and stress regime.

More Details

Experimental Studies of Anisotropy on Borehole Breakouts in Mancos Shale

Journal of Geophysical Research: Solid Earth

Choens, R.C.; Lee, Moo Y.; Ingraham, Mathew D.; Dewers, Thomas D.; Herrick, Courtney G.

Measuring the size and orientation of borehole breakouts is one of the primary methods for determining the orientation and magnitudes of the in situ stresses in the subsurface. To better understand the effects of anisotropy on borehole breakouts, experiments were conducted on Mancos Shale, a finely laminated mudrock. A novel testing configuration was developed to conduct borehole breakout experiments in a standard triaxial vessel and load frame. Samples were prepared at three different orientations and deformed under 6.9 to 20.7 MPa confining pressure. The results show a variation of peak strength and breakout geometry depending on the lamination orientation. Samples deformed parallel to laminations failed at a higher maximum compressive stress than samples deformed perpendicular to laminations, which were stronger than inclined samples. These relationships are quantified by a cosine-based failure envelope. Observed breakout shapes in perpendicular samples are V-shaped and symmetric around the borehole, which advance as a series of fractures of increasing size into the sidewalls. In inclined samples, fractures form along weaker laminations planes and grow in an en echelon pattern towards the axial stress direction. In parallel samples, long fractures grow from the wellbore towards the axial stress direction. The observed geometries highlight potential sources of error in calculating in situ stresses from borehole breakouts.

More Details

Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada

George, James T.; Sobolik, Steven R.; Lee, Moo Y.; Park, Byoung P.; Costin, Laurence C.

The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range of temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.

More Details

Acoustic emission during borehole breakout

52nd U.S. Rock Mechanics/Geomechanics Symposium

Choens, R.C.; Ingraham, Mathew D.; Lee, Moo Y.; Yoon, Hongkyu Y.; Dewers, Thomas D.

A novel experimental geometry is combined with acoustic emission monitoring capability to measure crack growth and damage accumulation during laboratory simulations of borehole breakout. Three different experiments are conducted in this study using Sierra White Granite. In the first experiment, the sample is deformed at a constant 17.2 MPa confining pressure without pore fluids; in the second experiment, the sample is held at a constant effective pressure of 17.2 MPa with a constant pore pressure; and in the third experiment, pore pressure is modified to induce failure at otherwise constant stress. The results demonstrate that effective pressure and stress path have controlling influence on breakout initiation and damage accumulation in laboratory simulations of wellbore behavior. Excellent agreement between the dry test and constant pore pressure test verify the application of the effective pressure law to borehole deformation. Located AE events coincide with post-test observations of damage and fracture locations. Comparison of AE behavior between the experiments with pore pressure show that breakouts develop prior to peak stress, and continued loading drives damage further into the formation and generates shear fractures.

More Details

In-situ stress measurement at 1550-meters depth at the kISMET test site in Lead, S.D

51st US Rock Mechanics / Geomechanics Symposium 2017

Wang, H.F.; Lee, Moo Y.; Doe, T.W.; Haimson, B.C.; Oldenburg, C.M.; Dobson, P.F.

We conducted a series of in situ stress measurements in a 100-meter deep hole (kISMET 003) drilled vertically from the 4850-ft level (1478-meters depth) of the Sanford Underground Research Facility (SURF) located in Lead, South Dakota. We used the method of hydraulic fracturing for in situ stress measurements (Haimson and Cornet, 2003) at total overburden depths between 1520 and 1550 meters The minimum horizontal stress magnitudes were taken to be the shut-in pressures obtained from dP/dt analysis (Lee and Haimson, 1989) of pressurization cycles 3 and 4 in each test. The values ranged between 20.0 and 24.1 MPa (2900 and 3494 psi), and averaged 21.7 MPa (3146 psi). The direction of maximum principal stress was obtained from analysis of an acoustic borehole televiewer log following the hydraulic fracturing. The fractures are striking at an average of N86°E with a dip of 78° to the southeast. The fact that the fractures are not following foliation but have a non-vertical, though very steep, dip indicates that one of the principal stresses may be inclined slightly off vertical.

More Details

Fracture and flow designs for the collab/SIGMA-V project

Transactions - Geothermal Resources Council

Knox, Hunter A.; Fu, P.; Morris, J.P.; Guglielmi, Y.; Vermeul, V.R.; Ajo-Franklin, J.; Strickland, C.E.; Johnson, Timothy; Herrick, Courtney G.; Lee, Moo Y.; Bauer, S.J.; Baumgartner, T.; Blankenship, D.; Bonneville, A.; Boyd, L.; Brown, S.T.; Burghardt, J.A.; Carroll, S.A.; Chen, T.; Condon, C.; Cook, P.J.; Dobson, P.F.; Doe, T.; Doughty, C.A.; Elsworth, D.; Frash, L.P.; Frone, Z.; Ghassemi, A.; Gudmundsdottir, H.; Guthrie, G.; Haimson, B.; Heise, J.; Horn, M.; Horne, R.N.; Hu, M.; Huang, H.; Huang, L.; Johnson, T.C.; Johnston, B.; Karra, S.; Kim, K.; King, D.K.; Kneafsey, T.; Kumar, D.; Li, K.; Maceira, M.; Makedonska, N.; Marone, C.; Mattson, E.; McClure, M.W.; McLennan, J.; McLing, T.; Mellors, R.J.; Metcalfe, E.; Miskimins, J.; Nakagawa, S.; Neupane, G.; Newman, G.; Nieto, A.; Oldenburg, C.M.; Pawar, R.; Petrov, P.; Pietzyk, B.; Podgorney, R.; Polsky, Y.; Porse, S.; Roggenthen, B.; Rutqvist, J.; Santos-Villalobos, H.; Schwering, P.; Sesetty, V.; Singh, A.; Smith, M.M.; Snyder, N.; Sone, H.; Sonnenthal, E.L.; Spycher, N.; Su, J.; Suzuki, A.; Ulrich, C.; Valladao, C.A.; Vandermeer, W.; Vardiman, D.; Wagoner, J.L.; Wang, H.F.; Weers, J.; White, J.; White, M.D.; Winterfeld, P.; Wu, Y.S.; Wu, Y.; Zhang, Y.; Zhang, Y.Q.; Zhou, J.; Zhou, Q.; Zoback, M.D.

The first experiment of the Enhanced Geothermal Systems (EGS) Collab (a.k.a Stimulation Investigations for Geothermal Modeling Analysis and Validation (SIGMA-V)) project is designed to comprehensively monitor a series of hydraulic fracture stimulations and subsequent flow tests. This experiment is planned for the 4850 Level in the Sanford Underground Research Facility (SURF), located at the former Homestake Gold Mine, in Lead, South Dakota. The target host rock for these stimulations and flow tests is a phyllite schist known as the Poorman formation. This paper discusses at a high level the engineering design for the stimulation and fracture monitoring system, the considerations for the test bed construction, and the preliminary stimulation modeling. Furthermore, this paper will highlight the intricate ways that predictive modeling can be used for testbed and stimulation design. This project is funded by the United States Department of Energy, Geothermal Technologies Office (GTO).

More Details

The State of stress in the Sanford Underground Research Facility (SURF) in Lead South Dakota

Lee, Moo Y.

As a part of the U.S. Department of Energy (DOE) SubTER (Subsurface Technology and Engineering Research, Development and Demonstration) initiative, University of Wisconsin- Madison, Sandia National Laboratories, and Lawrence Berkeley National Laboratory conducted the Permeability (k) and Induced Seismicity Management for Energy Technologies (kISMET) project. The objectives of the project are to define the in situ status of stress in the Sanford Underground Research Facility (SURF) in Lead, South Dakota and to establish the relations between in situ stress and induced fracture through hydraulically stimulating the fracture. (SURF) in Lead, South Dakota. In situ tests are conducted in a 7.6 cm diameter and 100 long vertical borehole located in the 4850 Level West Access Drift near Davies Campus of SURF (Figure 1). The borehole is located in the zone of Precambrian Metamorphic Schist.

More Details

Helium-mass-spectrometry-permeameter for the measurement of permeability of low permeability rock with application to triaxial deformation conditions

49th US Rock Mechanics / Geomechanics Symposium 2015

Bauer, Stephen J.; Lee, Moo Y.; Gardner, William P.

A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. Here we use a Helium - Mass - Spectrometry - Permeameter (HMSP) to conduct a constant pressure, steady state flow test through a sample using helium gas. Under triaxial stress conditions, the HMSP can measure flow and estimate permeability of rocks and geomaterials down to the nanodarcy scale (10-21 m2). In this study, measurements of flow through eight shale samples under hydrostatic conditions were in the range of 10-7 to 10-9 Darcy. We extend this flow measurement technology by dynamically monitoring the release of helium from a helium saturated shale sample during a triaxial deformation experiment. The helium flow, initially extremely low, consistent with the low permeability of shale, is observed to increase in advance of volume strain increase during deformation of the shale. This is perhaps the result of microfracture development and flow path linkage through the microfractures within the shale. Once microfracturing coalescence initiates, there is a large increase in helium release and flow. This flow rate increase is likely the result of development of a macrofracture in the sample, a flow conduit, later confirmed by post-test observations of the deformed sample. The release rate (flow) peaks and then diminishes slightly during subsequent deformation; however the post deformation flow rate is considerably greater than that of undeformed shale.

More Details

Assessment of public perception of radioactive waste management in Korea

Trone, Janis R.; Lee, Moo Y.

The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

More Details

Crushed salt reconsolidation at elevated temperatures

Clayton, Daniel J.; Lee, Moo Y.; Holcomb, David J.; Bronowski, David R.

There is a long history of testing crushed salt as backfill for the Waste Isolation Pilot Plant program, but testing was typically done at 100 C or less. Future applications may involve backfilling crushed salt around heat-generating waste packages, where near-field temperatures could reach 250 C or hotter. A series of experiments were conducted to investigate the effects of hydrostatic stress on run-of-mine salt at temperatures up to 250 C and pressures to 20 MPa. The results of these tests were compared with analogous modeling results. By comparing the modeling results at elevated temperatures to the experimental results, the adequacy of the current crushed salt reconsolidation model was evaluated. The model and experimental results both show an increase in the reconsolidation rate with temperature. The current crushed salt model predicts the experimental results well at a temperature of 100 C and matches the overall trends, but over-predicts the temperature dependence of the reconsolidation. Further development of the deformation mechanism activation energies would lead to a better prediction of the temperature dependence by the crushed salt reconsolidation model.

More Details

Estimating the extent of the disturbed rock zone around a WIPP disposal room

43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium

Herrick, Courtney G.; Park, B.Y.; Lee, Moo Y.; Holcomb, David J.

The disturbed rock zone (DRZ) is an important feature which is evaluated in the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) to predict post-closure repository performance. Mining of a WIPP disposal room disturbs the stress state sufficiently to cause fracturing of the surrounding rock, and this fracturing will alter the mechanical and hydrological properties of the salt. DRZ extent, and permeability, controls the majority of the brine that enters or exits the repository in PA modeling of the undisturbed scenario. Extensive laboratory data from experiments performed on rock salt demonstrate that damage can be modeled in terms of stress invariants. In this paper the DRZ extent is calculated based on a dilatant damage criterion. The calibrated damage factor C in the damage criterion is determined by comparing ultrasonic wave velocity field measurements obtained in the S-90 drift with a numerical analysis that predicts the salt's behavior. Ultrasonic velocities decrease in the presence of microcracks and loosened grain boundaries associated with salt damage. The most extensive DRZ exists during early times, within the first ten years of mining. The maximum predicted DRZ surrounding a WIPP disposal room is approximately 2.25 m below, 4.75 m above, and 2 m laterally. This paper also presents several lines of evidence, based on previous studies, that support the prediction of DRZ size by applying a WIPP specific damage criterion calibrated using ultrasonic velocity measurements. Copyright 2009 ARMA, American Rock Mechanics Association.

More Details

Static and dynamic compaction of ceramic powders

International Journal of Solids and Structures

Vogler, Tracy V.; Lee, Moo Y.; Grady, D.E.

The static and dynamic compaction of ceramic powders was investigated experimentally using a high-pressure friction-compensated press to achieve static stresses of 1.6 GPa and with a novel gas gun setup to stresses of 5.9 GPa for a tungsten carbide powder. Experiments were performed in the partial compaction region to nearly full compaction. The effects of variables including initial density, particle size distribution, particle morphology, and loading path were investigated in the static experiments. Only particle morphology was found to significantly affect the compaction response. Post-test examination of the powder reveals fracture of the grains as well as breaking at particle edges. In dynamic experiments, steady structured compaction waves traveling at very low velocities were observed. The strain rate within the compaction waves was found to scale nearly linearly with the shock stress, in contrast with many fully dense materials where strain rate scales with stress to the fourth power. Similar scaling is found for data from the literature on TiO2 powder. The dynamic response of WC powder is found to be significantly stiffer than the static response, probably because deformation in the dynamic case is confined to the relatively narrow compaction wave front. Comparison of new static powder compaction results with shock data from the literature for SiO2 also reveals a stiffer dynamic response. © 2006 Elsevier Ltd. All rights reserved.

More Details

Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR)

Park, Byoung P.; Ehgartner, Brian L.; Lee, Moo Y.

Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.

More Details

Numerical simulation evaluating the structural integrity of spr caverns in the big hill salt dome

Proceedings of the 41st U.S. Rock Mechanics Symposium - ARMA's Golden Rocks 2006 - 50 Years of Rock Mechanics

Park, B.Y.; Herrick, C.G.; Ehgartner, Brian L.; Lee, Moo Y.; Sobolik, Steven R.

Three dimensional finite element analyses were performed to evaluate the structural integrity of SPR caverns located at the Big Hill site. These state-of-the-art analyses simulate the current site configuration with the addition of five caverns to produce an expanded facility. The model simulates 19 caverns in a systematic pattern with equal spacing and uniform cavern size and geometry. Operations, including both cavern workover and cavern enlargement due to leaching, were modeled to account for as many as five future oil drawdowns. The web of salt separating the caverns was reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified. The analyses include a recently derived damage criterion obtained from laboratory testing of Big Hill salt cores. From a structural viewpoint, the caverns were found to be stable. The thick caprock at Big Hill mitigated the predicted subsidence rates and damage to surface structures is not expected to occur. © 2006, ARMA, American Rock Mechanics Association.

More Details

Preliminary study on hydrogeology in tectonically active areas

Arnold, Bill W.; Lappin, Allen R.; Gettemy, Glen L.; Meier, Diane K.; Lee, Moo Y.; Jensen, Richard P.

This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

More Details

Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy (ALOX)

Lee, Moo Y.; Montgomery, Stephen M.

Detailed statistical analysis of the experimental data from testing of alumina-loaded epoxy (ALOX) composites was conducted to better understand influences of the selected compositional properties on the compressive strength of these ALOX composites. Analysis of variance (ANOVA) for different models with different sets of parameters identified the optimal statistical model as, y{sub l} = -150.71 + 29.72T{sub l} + 204.71D{sub l} + 160.93S{sub 1l} + 90.41S{sub 2l}-20.366T{sub l}S{sub 2l}-137.85D{sub l}S{sub 1l}-90.08D{sub l}S{sub 2l} where y{sub l} is the predicted compressive strength, T{sub l} is the powder type, D{sub l} is the density as the covariate for powder volume concentration, and S{sub il}(i=1,2) is the strain rate. Based on the optimal statistical model, we conclude that the compressive strength of the ALOX composite is significantly influenced by the three main factors examined: powder type, density, and strain rate. We also found that the compressive strength of the ALOX composite is significantly influenced by interactions between the powder type and the strain rate and between the powder volume concentration and the strain rate. However, the interaction between the powder type and the powder volume concentration may not significantly influence the compressive strength of the ALOX composite.

More Details

Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR)

Park, Byoung P.; Lee, Moo Y.; Ehgartner, Brian L.; Sobolik, Steven R.

3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

More Details

Phase transformation of poled "chem-prep" PZT 95/5-2Nb ceramic under quasi-static loading conditions

Lee, Moo Y.; Montgomery, Stephen M.; Hofer, John H.

Specimens of poled 'chem-prep' PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at three temperatures of -55, 25, and 75 C and pressures up to 500 MPa. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations so that grain-scale modeling efforts can develop and test models and codes using realistic parameters. The poled ceramic undergoes anisotropic deformation during the transition from a FE to an AFE structure. The lateral strain measured parallel to the poling direction was typically 35 % greater than the strain measured perpendicular to the poling direction. The rates of increase in the phase transformation pressures per temperature changes were practically identical for both unpoled and poled PNZT HF803 specimens. We observed that the retarding effect of temperature on the kinetics of phase transformation appears to be analogous to the effect of shear stress. We also observed that the FE-to-AFE phase transformation occurs in poled ceramic when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.

More Details

Compressed air energy storage monitoring to support refrigerated mined rock cavern technology

Bauer, Stephen J.; Lee, Moo Y.

This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

More Details

Laboratory constitutive characterization of cellular concrete

Lee, Moo Y.; Bronowski, David R.; Hardy, Robert D.

To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

More Details

Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C

Lee, Moo Y.; Lee, Moo Y.; Montgomery, Stephen M.; Hofer, John H.; Zeuch, David H.

Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZT under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.

More Details

Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress

Proposed for publication in the International Journal of Rock Mechanics and Mining Sciences.

Lee, Moo Y.; Lee, Moo Y.

We have conducted five hydraulic fracturing stress measurement campaigns in Korea, involving 13 test holes ranging in depth from 30 to 250 m, at locations from North Seoul to the southern coast of the peninsula. The measurements reveal consistent crustal stress magnitudes and directions that suggest persistence throughout western and southern Korea. The maximum horizontal stress {sigma}{sub H} is oriented between ENE-WSW and E-W, in accord with plate movement and deformation, and with directions indicated by both focal mechanism solutions from earthquakes inland and offshore as well as borehole breakouts in mainland China close to its eastern coast. With respect to magnitudes, the vertical stress is the overall minimum stress at all tested locations, suggesting a thrust faulting regime within the relatively shallow depths reached by our tests. Typically, such a stress regime becomes one favoring strike-slip at greater depths, as is also indicated by the focal mechanism solutions around Korea.

More Details

Laboratory Evaluation of Damage Criteria and Creep Parameters of Tioga Dolomite and Rock Salt from Cavern Well No. 1

Lee, Moo Y.; Ehgartner, Brian L.; Ehgartner, Brian L.

A suite of laboratory triaxial compression and triaxial steady-state creep tests provide quasi-static elastic constants and damage criteria for bedded rock salt and dolomite extracted from Cavern Well No.1 of the Tioga field in northern Pennsylvania. The elastic constants, quasi-static damage criteria, and creep parameters of host rocks provides information for evaluating a proposed cavern field for gas storage near Tioga, Pennsylvania. The Young's modulus of the dolomite was determined to be 6.4 ({+-}1.0) x 10{sup 6} psi, with a Poisson's ratio of 0.26 ({+-}0.04). The elastic Young's modulus was obtained from the slope of the unloading-reloading portion of the stress-strain plots as 7.8 ({+-}0.9) x 10{sup 6} psi. The damage criterion of the dolomite based on the peak load was determined to be J{sub 2}{sup 0.5} (psi) = 3113 + 0.34 I{sub 1} (psi) where I{sub 1} and J{sub 2} are first and second invariants respectively. Using the dilation limit as a threshold level for damage, the damage criterion was conservatively estimated as J{sub 2}{sup 0.5} (psi) = 2614 + 0.30 I{sub 1} (psi). The Young's modulus of the rock salt, which will host the storage cavern, was determined to be 2.4 ({+-}0.65) x 10{sup 6} psi, with a Poisson's ratio of 0.24 ({+-}0.07). The elastic Young's modulus was determined to be 5.0 ({+-}0.46) x 10{sup 6} psi. Unlike the dolomite specimens under triaxial compression, rock salt specimens did not show shear failure with peak axial load. Instead, most specimens showed distinct dilatancy as an indication of internal damage. Based on dilation limit, the damage criterion for the rock salt was estimated as J{sub 2}{sup 0.5} (psi) = 704 + 0.17 I{sub 1} (psi). In order to determine the time dependent deformation of the rock salt, we conducted five triaxial creep tests. The creep deformation of the Tioga rock salt was modeled based on the following three-parameter power law as {var_epsilon}{sub s} = 1.2 x 10{sup -17} {sigma}{sup 4.75} exp(-6161/T), where {var_epsilon}{sub s} is the steady state strain rate in s{sup -1}, {sigma} is the applied axial stress difference in psi, and T is the temperature in Kelvin.

More Details
99 Results
99 Results