Tradeoffs in hybrid quantum-classical algorithms for designing quantum optimal controls
Abstract not provided.
Abstract not provided.
Nature (London)
Here, using a quantum computer to speed up one step in a textbook approach to generating random numbers proves to be a savvy strategy, and one that could make good use of quantum computers that will be available in the near future.
Physical Review A
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers. The goal of these algorithms is to perform large quantum computations by breaking the problem down into a large number of shallow quantum circuits, complemented by classical optimization and feedback between each circuit execution. One path for improving the performance of these algorithms is to enhance the classical optimization technique. Given the relative ease and abundance of classical computing resources, there is ample opportunity to do so. In this work, we introduce the idea of learning surrogate models for variational circuits using a few experimental measurements, and then performing parameter optimization using these models as opposed to the original data. We demonstrate this idea using a surrogate model based on kernel approximations, through which we reconstruct local patches of variational cost functions using batches of noisy quantum circuit results. Through application to the quantum approximate optimization algorithm and preparation of ground states for molecules, we demonstrate the superiority of surrogate-based optimization over commonly used optimization techniques for variational algorithms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Research
Simulation of the interaction of light with matter, including at the few-photon level, is important for understanding the optical and optoelectronic properties of materials and for modeling next-generation nonlinear spectroscopies that use entangled light. At the few-photon level the quantum properties of the electromagnetic field must be accounted for with a quantized treatment of the field, and then such simulations quickly become intractable, especially if the matter subsystem must be modeled with a large number of degrees of freedom, as can be required to accurately capture many-body effects and quantum noise sources. Motivated by this we develop a quantum simulation framework for simulating such light-matter interactions on platforms with controllable bosonic degrees of freedom, such as vibrational modes in the trapped ion platform. The key innovation in our work is a scheme for simulating interactions with a continuum field using only a few discrete bosonic modes, which is enabled by a Green's function (response function) formalism. We develop the simulation approach, sketch how the simulation can be performed using trapped ions, and then illustrate the method with numerical examples. Our work expands the reach of quantum simulation to important light-matter interaction models and illustrates the advantages of extracting dynamical quantities such as response functions from quantum simulations.
Quantum
As the width and depth of quantum circuits implemented by state-of-the-art quantum processors rapidly increase, circuit analysis and assessment via classical simulation are becoming unfeasible. It is crucial, therefore, to develop new methods to identify significant error sources in large and complex quantum circuits. In this work, we present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most and thus helps to identify the most significant sources of error. The technique requires no classical verification of the circuit output and is thus a scalable tool for debugging large quantum programs in the form of circuits. We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
Physical Review Letters
It is hoped that quantum computers will offer advantages over classical computers for combinatorial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where the results of qubit measurements are used to constructively assign values to quantum circuit parameters. We show that this procedure results in an estimate of the combinatorial optimization problem solution that improves monotonically with the depth of the quantum circuit. Importantly, the measurement-based feedback enables approximate solutions to the combinatorial optimization problem without the need for any classical optimization effort, as would be required for the quantum approximate optimization algorithm. We demonstrate this feedback-based protocol on a superconducting quantum processor for the graph-partitioning problem MaxCut, and present a series of numerical analyses that further investigate the protocol's performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
PRX Quantum
Errors in quantum logic gates are usually modeled by quantum process matrices (CPTP maps). But process matrices can be opaque and unwieldy. We show how to transform the process matrix of a gate into an error generator that represents the same information more usefully. We construct a basis of simple and physically intuitive elementary error generators, classify them, and show how to represent the error generator of any gate as a mixture of elementary error generators with various rates. Finally, we show how to build a large variety of reduced models for gate errors by combining elementary error generators and/or entire subsectors of generator space. We conclude with a few examples of reduced models, including one with just 9N2 parameters that describes almost all commonly predicted errors on an N-qubit processor.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Research
Optimally-shaped electromagnetic fields have the capacity to coherently control the dynamics of quantum systems and thus offer a promising means for controlling molecular transformations relevant to chemical, biological, and materials applications. Currently, advances in this area are hindered by the prohibitive cost of the quantum dynamics simulations needed to explore the principles and possibilities of molecular control. However, the emergence of nascent quantum-computing devices suggests that efficient simulations of quantum dynamics may be on the horizon. In this article, we study how quantum computers could be employed to design optimally-shaped fields to control molecular systems. We introduce a hybrid algorithm that utilizes a quantum computer for simulating the field-induced quantum dynamics of a molecular system in polynomial time, in combination with a classical optimization approach for updating the field. Qubit encoding methods relevant for molecular control problems are described, and procedures for simulating the quantum dynamics and obtaining the simulation results are discussed. Numerical illustrations are then presented that explicitly treat paradigmatic vibrational and rotational control problems, and also consider how optimally-shaped fields could be used to elucidate the mechanisms of energy transfer in light-harvesting complexes. Resource estimates, as well as a numerical assessment of the impact of hardware noise and the prospects of near-term hardware implementations, are provided for the latter task.
Physical Review Research
Optimally-shaped electromagnetic fields have the capacity to coherently control the dynamics of quantum systems and thus offer a promising means for controlling molecular transformations relevant to chemical, biological, and materials applications. Currently, advances in this area are hindered by the prohibitive cost of the quantum dynamics simulations needed to explore the principles and possibilities of molecular control. However, the emergence of nascent quantum-computing devices suggests that efficient simulations of quantum dynamics may be on the horizon. In this article, we study how quantum computers could be employed to design optimally-shaped fields to control molecular systems. We introduce a hybrid algorithm that utilizes a quantum computer for simulating the field-induced quantum dynamics of a molecular system in polynomial time, in combination with a classical optimization approach for updating the field. Qubit encoding methods relevant for molecular control problems are described, and procedures for simulating the quantum dynamics and obtaining the simulation results are discussed. Numerical illustrations are then presented that explicitly treat paradigmatic vibrational and rotational control problems, and also consider how optimally-shaped fields could be used to elucidate the mechanisms of energy transfer in light-harvesting complexes. Resource estimates, as well as a numerical assessment of the impact of hardware noise and the prospects of near-term hardware implementations, are provided for the latter task.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
After decades of R&D, quantum computers comprising more than 2 qubits are appearing. If this progress is to continue, the research community requires a capability for precise characterization (“tomography”) of these enlarged devices, which will enable benchmarking, improvement, and finally certification as mission-ready. As world leaders in characterization -- our gate set tomography (GST) method is the current state of the art – the project team is keenly aware that every existing protocol is either (1) catastrophically inefficient for more than 2 qubits, or (2) not rich enough to predict device behavior. GST scales poorly, while the popular randomized benchmarking technique only measures a single aggregated error probability. This project explored a new insight: that the combinatorial explosion plaguing standard GST could be avoided by using an ansatz of few-qubit interactions to build a complete, efficient model for multi-qubit errors. We developed this approach, prototyped it, and tested it on a cutting-edge quantum processor developed by Rigetti Quantum Computing (RQC), a US-based startup. We implemented our new models within Sandia’s PyGSTi open-source code, and tested them experimentally on the RQC device by probing crosstalk. We found two major results: first, our schema worked and is viable for further development; second, while the Rigetti device is indeed a “real” 8-qubit quantum processor, its behavior fluctuated significantly over time while we were experimenting with it and this drift made it difficult to fit our models of crosstalk to the data.
Abstract not provided.
ACS Photonics
A number of applications in basic science and technology would benefit from high-fidelity photon-number-resolving photodetectors. While some recent experimental progress has been made in this direction, the requirements for true photon number resolution are stringent, and no design currently exists that achieves this goal. Here we employ techniques from fundamental quantum optics to demonstrate that detectors composed of subwavelength elements interacting collectively with the photon field can achieve high-performance photon number resolution. We propose a new design that simultaneously achieves photon number resolution, high efficiency, low jitter, low dark counts, and high count rate. We discuss specific systems that satisfy the design requirements, pointing to the important role of nanoscale device elements.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review A
Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. The framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.
Abstract not provided.
Abstract not provided.
Physical Review A
We study the problem of estimating a function of many parameters acquired by sensors that are distributed in space, e.g., the spatial gradient of a field. We restrict ourselves to a setting where the distributed sensors are probed with experimentally practical resources, namely, field modes in separable displaced thermal states, and focus on the optimal design of the optical receiver that measures the phase-shifted returning field modes. Within this setting, we demonstrate that a locally optimal measurement strategy, i.e., one that achieves the standard quantum limit for all phase-shift values, is a Gaussian measurement, and moreover, one that is separable. We also demonstrate the utility of adaptive phase measurements for making estimation performance robust in cases where one has little prior information on the unknown parameters. In this setting we identify a regime where it is beneficial to use structured optical receivers that entangle the received modes before measurement.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review A
Building on recent work by Gammelmark et al. [Phys. Rev. Lett. 111, 160401 (2013)10.1103/PhysRevLett.111.160401] we develop a formalism for prediction and retrodiction of Gaussian quantum systems undergoing continuous measurements. We apply the resulting formalism to study the advantage of incorporating a full measurement record and retrodiction for impulselike force detection and accelerometry. We find that using retrodiction can only increase accuracy in a limited parameter regime, but that the reduction in estimation noise that it yields results in better detection of impulselike forces.
Physical Review A
Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.
Physical Review X
Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
EPJ Quantum Technology
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these two points of view is a critical step in making the most of this promising technology. In this work we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. To demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.
Abstract not provided.
This the final report of the LDRD project entitled "Realizing the Power of Near-Term Quantum Technologies", which was tasked with laying a theoretical foundation and computational framework for quantum simulation on quantum devices, to support both future Sandia efforts and the broader academic research effort in this area. The unifying theme of the project has been the desire to delineate more clearly the interface between existent classical computing resources that are vast and reliable with emerging quantum computing resources that will be scarce and unreliable for the foreseeable future. We seek to utilize classical computing resources to judge the efficacy of quantum devices for quantum simulation tasks and determine when they exceed the performance of classical devices, thereby achieving "quantum supremacy". This task was initially pursued by adapting the general concept of "parameter space compression" to quantum simulation. An inability to scale this analysis efficiently to large-scale simulations precipitated a shift in focus to assessing quantum supremacy of a specific quantum device, a 1D Bose gas trapped in an optical lattice, that was more amenable to large-scale analysis. We also seek to reconstruct unobserved information from limited observations of a quantum device to enhance their utility. This task was initially pursued as an application of maximum entropy reconstruction. Initial attempts to improve entropy approximations for direct reconstruction by free energy minimization proved to be more difficult than expected, and the focus shifted to the development of a quantum thermostat to facilitate indirect reconstruction by evolving a quantum Markov process. An efficient quantum thermostat is broadly useful for quantum state preparation in almost any quantum simulation task. In the middle of the project, a small opportunistic investment was made in a high-risk experiment to build an analog quantum simulator out of hole quantum dots in Ge/SiGe heterostructures. While a useful simulator was not produced, hole quantum dots at a Ge/SiGe interface have been successfully observed for the first time.
Physical Review Letters
Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not a well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. These theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advances in Physics: X
Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.
Abstract not provided.
arXiv.org Repository
Advances in the emerging field of coherent quantum feedback control (CQFC) have led to the development of new capabilities in the areas of quantum control and quantum engineering, with a particular impact on the theory and applications of quantum optical networks. For this study, we consider a CQFC network consisting of two coupled optical parametric oscillators (OPOs) and study the squeezing spectrum of its output field. The performance of this network as a squeezed-light source with desired spectral characteristics is optimized by searching over the space of model parameters with experimentally motivated bounds. We use the QNET package to model the network’s dynamics and the PyGMO package of global optimization algorithms to maximize the degree of squeezing at a selected sideband frequency or the average degree of squeezing over a selected bandwidth. The use of global search methods is critical for identifying the best possible performance of the CQFC network, especially for squeezing at higher-frequency sidebands and higher bandwidths. The results demonstrate that the CQFC network of two coupled OPOs makes it possible to vary the squeezing spectrum, effectively utilize the available pump power, and overall significantly outperform a single OPO. Additionally, the Hessian eigenvalue analysis shows that the squeezing generation performance of the optimally operated CQFC network is robust to small variations of phase parameters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review A - Atomic, Molecular, and Optical Physics
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Using a novel formal methods approach, we have generated computer-veri ed proofs of major theorems pertinent to the quantum phase estimation algorithm. This was accomplished using our Prove-It software package in Python. While many formal methods tools are available, their practical utility is limited. Translating a problem of interest into these systems and working through the steps of a proof is an art form that requires much expertise. One must surrender to the preferences and restrictions of the tool regarding how mathematical notions are expressed and what deductions are allowed. Automation is a major driver that forces restrictions. Our focus, on the other hand, is to produce a tool that allows users the ability to con rm proofs that are essentially known already. This goal is valuable in itself. We demonstrate the viability of our approach that allows the user great exibility in expressing state- ments and composing derivations. There were no major obstacles in following a textbook proof of the quantum phase estimation algorithm. There were tedious details of algebraic manipulations that we needed to implement (and a few that we did not have time to enter into our system) and some basic components that we needed to rethink, but there were no serious roadblocks. In the process, we made a number of convenient additions to our Prove-It package that will make certain algebraic manipulations easier to perform in the future. In fact, our intent is for our system to build upon itself in this manner.
Physical Review A - Atomic, Molecular, and Optical Physics
We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.
Abstract not provided.
Physical Review A - Atomic, Molecular, and Optical Physics
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In this paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. The method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters [Phys. Rev. Lett. 113, 080401 (2014)PRLTAO0031-9007 10.1103/PhysRevLett.113.080401].
Abstract not provided.
Abstract not provided.
Physical Review X
We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice's and Bob's measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Communications in Mathematical Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
New Journal of Physics
While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to 'Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)', which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. © IOP Publishing and Deutsche Physikalische Gesellschaft.
Abstract not provided.
New Journal of Physics
Abstract not provided.
To be decided.
Abstract not provided.
New Journal of Physics
Abstract not provided.
Physical Review X
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry B
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in New Journal of Physics.
Abstract not provided.
Abstract not provided.
Physical Review Letters
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations. © 2012 American Physical Society.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.