Publications

Results 1–50 of 120

Search results

Jump to search filters

Trust-Enhancing Probabilistic Transfer Learning for Sparse and Noisy Data Environments

Bridgman, Wyatt; Balakrishnan, Uma; Soriano, Bruno S.; Jung, Kisung; Wang, Fulton; Jacobs, Justin W.; Jones, Reese E.; Rushdi, Ahmad; Chen, Jacqueline H.; Khalil, Mohammad

There is an increasing aspiration to utilize machine learning (ML) for various tasks of relevance to national security. ML models have thus far been mostly applied to tasks and domains that, while impactful, have sufficient volume of data. For predictive tasks of national security relevance, ML models of great capacity (ability to approximate nonlinear trends in input-output maps) are often needed to capture the complex underlying physics. However, scientific problems of relevance to national security are often accompanied by various sources of sparse and/or incomplete data, including experiments and simulations, across different regimes of operation, of varying degrees of fidelity, and include noise with different characteristics and/or intensity. State-of-the-art ML models, despite exhibiting superior performance on the task and domain they were trained on, may suffer detrimental loss in performance in such sparse data environments. This report summarizes the results of the Laboratory Directed Research and Development project entitled Trust-Enhancing Probabilistic Transfer Learning for Sparse and Noisy Data Environments. The objective of the project was to develop a new transfer learning (TL) framework that aims to adaptively blend the data across different sources in tackling one task of interest, resulting in enhanced trustworthiness of ML models for mission- and safety-critical systems. The proposed framework determines when it is worth applying TL and how much knowledge is to be transferred, despite uncontrollable uncertainties. The framework accomplishes this by leveraging concepts and techniques from the fields of Bayesian inverse modeling and uncertainty quantification, relying on strong mathematical foundations of probability and measure theories to devise new uncertainty-aware TL workflows.

More Details

Robust scalable initialization for Bayesian variational inference with multi-modal Laplace approximations

Probabilistic Engineering Mechanics

Bridgman, Wyatt; Jones, Reese E.; Khalil, Mohammad

Predictive modeling typically relies on Bayesian model calibration to provide uncertainty quantification. Variational inference utilizing fully independent (“mean-field”) Gaussian distributions are often used as approximate probability density functions. This simplification is attractive since the number of variational parameters grows only linearly with the number of unknown model parameters. However, the resulting diagonal covariance structure and unimodal behavior can be too restrictive to provide useful approximations of intractable Bayesian posteriors that exhibit highly non-Gaussian behavior, including multimodality. High-fidelity surrogate posteriors for these problems can be obtained by considering the family of Gaussian mixtures. Gaussian mixtures are capable of capturing multiple modes and approximating any distribution to an arbitrary degree of accuracy, while maintaining some analytical tractability. Unfortunately, variational inference using Gaussian mixtures with full-covariance structures suffers from a quadratic growth in variational parameters with the number of model parameters. The existence of multiple local minima due to strong nonconvex trends in the loss functions often associated with variational inference present additional complications, These challenges motivate the need for robust initialization procedures to improve the performance and computational scalability of variational inference with mixture models. In this work, we propose a method for constructing an initial Gaussian mixture model approximation that can be used to warm-start the iterative solvers for variational inference. The procedure begins with a global optimization stage in model parameter space. In this step, local gradient-based optimization, globalized through multistart, is used to determine a set of local maxima, which we take to approximate the mixture component centers. Around each mode, a local Gaussian approximation is constructed via the Laplace approximation. Finally, the mixture weights are determined through constrained least squares regression. The robustness and scalability of the proposed methodology is demonstrated through application to an ensemble of synthetic tests using high-dimensional, multimodal probability density functions. Here, the practical aspects of the approach are demonstrated with inversion problems in structural dynamics.

More Details

A heteroencoder architecture for prediction of failure locations in porous metals using variational inference

Computer Methods in Applied Mechanics and Engineering

Bridgman, Wyatt; Zhang, Xiaoxuan; Teichert, Greg; Khalil, Mohammad; Garikipati, Krishna; Foulk, James W.

In this work we employ an encoder–decoder convolutional neural network to predict the failure locations of porous metal tension specimens based only on their initial porosities. The process we model is complex, with a progression from initial void nucleation, to saturation, and ultimately failure. The objective of predicting failure locations presents an extreme case of class imbalance since most of the material in the specimens does not fail. In response to this challenge, we develop and demonstrate the effectiveness of data- and loss-based regularization methods. Since there is considerable sensitivity of the failure location to the particular configuration of voids, we also use variational inference to provide uncertainties for the neural network predictions. We connect the deterministic and Bayesian convolutional neural network formulations to explain how variational inference regularizes the training and predictions. We demonstrate that the resulting predicted variances are effective in ranking the locations that are most likely to fail in any given specimen.

More Details

Combined selection of the dynamic model and modeling error in nonlinear aeroelastic systems using Bayesian Inference

Journal of Sound and Vibration

Bisaillon, Philippe; Sandhu, Rimple; Pettit, Chris; Khalil, Mohammad; Poirel, Dominique; Manohar, C.S.; Sarkar, Abhijit

We report a Bayesian framework for concurrent selection of physics-based models and (modeling) error models. We investigate the use of colored noise to capture the mismatch between the predictions of calibrated models and observational data that cannot be explained by measurement error alone within the context of Bayesian estimation for stochastic ordinary differential equations. Proposed models are characterized by the average data-fit, a measure of how well a model fits the measurements, and the model complexity measured using the Kullback–Leibler divergence. The use of a more complex error models increases the average data-fit but also increases the complexity of the combined model, possibly over-fitting the data. Bayesian model selection is used to find the optimal physical model as well as the optimal error model. The optimal model is defined using the evidence, where the average data-fit is balanced by the complexity of the model. The effect of colored noise process is illustrated using a nonlinear aeroelastic oscillator representing a rigid NACA0012 airfoil undergoing limit cycle oscillations due to complex fluid–structure interactions. Several quasi-steady and unsteady aerodynamic models are proposed with colored noise or white noise for the model error. The use of colored noise improves the predictive capabilities of simpler models.

More Details

Sensitivity of void mediated failure to geometric design features of porous metals

International Journal of Solids and Structures

Teichert, G.H.; Khalil, Mohammad; Alleman, Coleman; Garikipati, K.; Jones, Reese E.

Material produced by current metal additive manufacturing processes is susceptible to variable performance due to imprecise control of internal porosity, surface roughness, and conformity to designed geometry. Using a double U-notched specimen, we investigate the interplay of nominal geometry and porosity in determining ductile failure characteristics during monotonic tensile loading. We simulate the effects of distributed porosity on plasticity and damage using a statistical model based on populations of pores visible in computed tomography scans and additional sub-threshold voids required to match experimental observations of deformation and failure. We interpret the simulation results from a physical viewpoint and provide a statistical model of the probability of failure near stress concentrations. We provide guidance for designs where material defects could cause unexpected failures depending on the relative importance of these defects with respect to features of the nominal geometry.

More Details

UQTk Version 3.1.2 User Manual

Sargsyan, Khachik; Safta, Cosmin; Boll, Luke; Johnston, Katherine; Khalil, Mohammad; Chowdhary, Kenny; Rai, Prashant; Casey, T.; Zeng, Xiaoshu; Debusschere, Bert

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.2 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

UQTk Version 3.1.1 User Manual

Sargsyan, Khachik; Safta, Cosmin; Johnston, Katherine; Khalil, Mohammad; Chowdhary, Kenny; Rai, Prashant; Casey, T.; Boll, Luke; Zeng, Xiaoshu; Debusschere, Bert

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.1 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Nonlinear sparse Bayesian learning for physics-based models

Journal of Computational Physics

Sandhu, Rimple; Khalil, Mohammad; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit

This paper addresses the issue of overfitting while calibrating unknown parameters of over-parameterized physics-based models with noisy and incomplete observations. A semi-analytical Bayesian framework of nonlinear sparse Bayesian learning (NSBL) is proposed to identify sparsity among model parameters during Bayesian inversion. NSBL offers significant advantages over machine learning algorithm of sparse Bayesian learning (SBL) for physics-based models, such as 1) the likelihood function or the posterior parameter distribution is not required to be Gaussian, and 2) prior parameter knowledge is incorporated into sparse learning (i.e. not all parameters are treated as questionable). NSBL employs the concept of automatic relevance determination (ARD) to facilitate sparsity among questionable parameters through parameterized prior distributions. The analytical tractability of NSBL is enabled by employing Gaussian ARD priors and by building a Gaussian mixture-model approximation of the posterior parameter distribution that excludes the contribution of ARD priors. Subsequently, type-II maximum likelihood is executed using Newton's method whereby the evidence and its gradient and Hessian information are computed in a semi-analytical fashion. We show numerically and analytically that SBL is a special case of NSBL for linear regression models. Subsequently, a linear regression example involving multimodality in both parameter posterior pdf and model evidence is considered to demonstrate the performance of NSBL in cases where SBL is inapplicable. Next, NSBL is applied to identify sparsity among the damping coefficients of a mass-spring-damper model of a shear building frame. These numerical studies demonstrate the robustness and efficiency of NSBL in alleviating overfitting during Bayesian inversion of nonlinear physics-based models.

More Details

Modeling and predicting power from a WEC array

Oceans Conference Record (IEEE)

Coe, Ryan G.; Bacelli, Giorgio; Gaebele, Daniel T.; Cotten, Alfred; Mcnatt, Cameron; Wilson, David G.; Weaver, Wayne; Kasper, Jeremy L.; Khalil, Mohammad; Dallman, Ann

This study presents a numerical model of a WEC array. The model will be used in subsequent work to study the ability of data assimilation to support power prediction from WEC arrays and WEC array design. In this study, we focus on design, modeling, and control of the WEC array. A case study is performed for a small remote Alaskan town. Using an efficient method for modeling the linear interactions within a homogeneous array, we produce a model and predictionless feedback controllers for the devices within the array. The model is applied to study the effects of spectral wave forecast errors on power output. The results of this analysis show that the power performance of the WEC array will be most strongly affected by errors in prediction of the spectral period, but that reductions in performance can realistically be limited to less than 10% based on typical data assimilation based spectral forecasting accuracy levels.

More Details

Aeroelastic oscillations of a pitching flexible wing with structural geometric nonlinearities: Theory and numerical simulation

Journal of Sound and Vibration

Robinson, Brandon; Da Costa, Leandro; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

This paper focuses on the derivation of an analytical model of the aeroelastic dynamics of an elastically mounted flexible wing. The equations of motion obtained serve to help understand the behaviour of the aeroelastic wind tunnel setup in question, which consists of a rectangular wing with a uniform NACA 0012 airfoil profile, whose base is free to rotate rigidly about a longitudinal axis. Of particular interest are the structural geometric nonlinearities primarily introduced by the coupling between the rigid body pitch degree-of-freedom and the continuous system. A coupled system of partial differential equations (PDEs) coupled with an ordinary differential equation (ODE) describing axial-bending-bending-torsion-pitch motion is derived using Hamilton's principle. A finite dimensional approximation of the system of coupled differential equations is obtained using the Galerkin method, leading to a system of coupled nonlinear ODEs. Subsequently, these nonlinear ODEs are solved numerically using Houbolt's method. The results that are obtained are verified by comparison with the results obtained by direct integration of the equations of motion using a finite difference scheme. Adopting a linear unsteady aerodynamic model, it is observed that the system undergoes coalescence flutter due to coupling between the rigid body pitch rotation dominated mode and the first flapwise bending dominated mode. The behaviour of the limit cycle oscillations is primarily influenced by the structural geometric nonlinear terms in the coupled system of PDEs and ODE.

More Details

Modeling strength and failure variability due to porosity in additively manufactured metals

Computer Methods in Applied Mechanics and Engineering

Khalil, Mohammad; Teichert, Gregory H.; Alleman, Coleman; Heckman, Nathan M.; Jones, Reese E.; Garikipati, Krishnakumar; Boyce, Brad L.

To model and quantify the variability in plasticity and failure of additively manufactured metals due to imperfections in their microstructure, we have developed uncertainty quantification methodology based on pseudo marginal likelihood and embedded variability techniques. We account for both the porosity resolvable in computed tomography scans of the initial material and the sub-threshold distribution of voids through a physically motivated model. Calibration of the model indicates that the sub-threshold population of defects dominates the yield and failure response. Finally, the technique also allows us to quantify the distribution of material parameters connected to microstructural variability created by the manufacturing process, and, thereby, make assessments of material quality and process control.

More Details

Characterization of Partially Observed Epidemics - Application to COVID-19

Safta, Cosmin; Ray, Jaideep; Foulk, James W.; Catanach, Thomas A.; Chowdhary, Kenny; Debusschere, Bert; Galvan, Edgar; Geraci, Gianluca; Khalil, Mohammad; Portone, Teresa

This report documents a statistical method for the "real-time" characterization of partially observed epidemics. Observations consist of daily counts of symptomatic patients, diagnosed with the disease. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information for the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and is predicated on a model for the distribution of the incubation period. The model parameters are estimated as distributions using a Markov Chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. The method is applied to the COVID-19 pandemic of 2020, using data at the country, provincial (e.g., states) and regional (e.g. county) levels. The epidemiological model includes a stochastic component due to uncertainties in the incubation period. This model-form uncertainty is accommodated by a pseudo-marginal Metropolis-Hastings MCMC sampler, which produces posterior distributions that reflect this uncertainty. We approximate the discrepancy between the data and the epidemiological model using Gaussian and negative binomial error models; the latter was motivated by the over-dispersed count data. For small daily counts we find the performance of the calibrated models to be similar for the two error models. For large daily counts the negative-binomial approximation is numerically unstable unlike the Gaussian error model. Application of the model at the country level (for the United States, Germany, Italy, etc.) generally provided accurate forecasts, as the data consisted of large counts which suppressed the day-to-day variations in the observations. Further, the bulk of the data is sourced over the duration before the relaxation of the curbs on population mixing, and is not confounded by any discernible country-wide second wave of infections. At the state-level, where reporting was poor or which evinced few infections (e.g., New Mexico), the variance in the data posed some, though not insurmountable, difficulties, and forecasts were able to capture the data with large uncertainty bounds. The method was found to be sufficiently sensitive to discern the flattening of the infection and epidemic curve due to shelter-in-place orders after around 90% quantile for the incubation distribution (about 10 days for COVID-19). The proposed model was also used at a regional level to compare the forecasts for the central and north-west regions of New Mexico. Modeling the data for these regions illustrated different disease spread dynamics captured by the model. While in the central region the daily counts peaked in the late April, in the north-west region the ramp-up continued for approximately three more weeks.

More Details

Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.12 User's Manual

Adams, Brian M.; Bohnhoff, William J.; Dalbey, Keith; Ebeida, Mohamed; Eddy, John P.; Eldred, Michael; Hooper, Russell; Hough, Patricia D.; Hu, Kenneth; Jakeman, John D.; Khalil, Mohammad; Maupin, Kathryn A.; Monschke, Jason A.; Ridgway, Elliott M.; Rushdi, Ahmad; Seidl, D.T.; Stephens, John A.; Swiler, Laura P.; Winokur, Justin

The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

UQTk User Manual (V.3.1.0)

Sargsyan, Khachik; Safta, Cosmin; Johnston, Katherine; Khalil, Mohammad; Chowdhary, Kenny; Rai, Prashant; Casey, T.; Zeng, Xiaoshu; Debusschere, Bert

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Transitional Markov Chain Monte Carlo Sampler in UQTk

Safta, Cosmin; Khalil, Mohammad; Najm, Habib N.

Transitional Markov Chain Monte Carlo (TMCMC) is a variant of a class of Markov Chain Monte Carlo algorithms known as tempering-based methods. In this report, the implementation of TMCMC in the Uncertainty Quantification Toolkit is investigated through the sampling of high-dimensional distributions, multi-modal distributions, and nonlinear manifolds. Furthermore, the Bayesian model evidence estimates obtained from TMCMC are tested on problems with known analytical solutions and shown to provide consistent results.

More Details
Results 1–50 of 120
Results 1–50 of 120