Publications

6 Results
Skip to search filters

Communication-assisted impedance-based microgrid protection scheme

IEEE Power and Energy Society General Meeting

El Khatib, Mohamed E.; Ellis, Abraham E.

Development of efficient non-overcurrent based protection schemes is a prerequisite for significantly increasing microgrids renewable energy penetration. In this paper a novel communication-assisted impedance-based protection scheme is proposed. For the sake of protection design, we partition microgrids into protection zones based on the availability of fault interruption devices. The proposed scheme depends on monitoring impedance trajectories at different feeder relays to detect the occurrence of faults and utilizes directional elements to determine the direction of faults. Communications between feeder relays are utilized to exchange permissive and blocking signals in order to locate the fault and trip the least part of the microgrid to clear the fault. Simulation results are presented to demonstrate the effectiveness of the proposed scheme.

More Details

Fault Analysis and Detection in Microgrids with High PV Penetration

El Khatib, Mohamed E.; Hernandez Alvidrez, Javier H.; Ellis, Abraham E.

In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgrid modes of operation.

More Details

Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

El Khatib, Mohamed E.; Ellis, Abraham E.; Biswal, Milan B.; Brahma, Sukumar B.; Ranade, Satish R.

In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.

More Details
6 Results
6 Results