Publications

Results 1–25 of 29
Skip to search filters

Distance Dependent Quenching and Gamma-Ray Spectroscopy in Tin-Loaded Polystyrene Scintillators

IEEE Transactions on Nuclear Science

Feng, Patrick L.; Mengesha, Wondwosen M.; Anstey, Mitchell A.; Cordaro, Joseph G.

In this work, we report the synthesis and inclusion of rationally designed organotin compounds in polystyrene matrices as a route towards plastic scintillators capable of gamma-ray spectroscopy. Tin loading ratios of up to 15% w/w have been incorporated, resulting in photopeak energy resolution values as low as 10.9% for 662 keV gamma-rays. Scintillator constituents were selected based upon a previously reported distance-dependent quenching mechanism. Data obtained using UV-Vis and photoluminescence measurements are consistent with this phenomenon and are correlated with the steric and electronic properties of the respective organotin complexes. We also report fast scintillation decay behavior that is comparable to the quenched scintillators 0.5% trans-stilbene doped bibenzyl and the commercial plastic scintillator BC-422Q-1%. These observations are discussed in the context of practical considerations such as optical transparency, ease-of-preparation/scale-up, and total scintillator cost.

More Details

Voltage clustering in redox-active ligand complexes: Mitigating electronic communication through choice of metal ion

Dalton Transactions

Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd M.; Tomson, Neil C.; Anstey, Mitchell A.

The redox-active bis(imino)acenapthene (BIAN) ligand was used to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

More Details

Plastic Scintillators Light Yield Energy Calibration

Mengesha, Wondwosen M.; Feng, Patrick L.; Cordaro, Joseph G.; Anstey, Mitchell A.; Myllenbeck, Nicholas M.; Throckmorton, Daniel J.

Currently we are investigating the inclusion of organotin compounds in polystyrene material to improve plastic scintillators full gamma-ray energy sensitivity with the ultimate goal of achieving spectroscopy. Accurate evaluation of light yield from the newly developed scintillators is crucial to assess merits of compounds and chemical process used in the scintillators development. Full gamma-ray energy peak in measured gammaray spectrum, resulting from total absorption of gamma-ray energy, would be ideal in evaluating the light yield from the new scintillators. However, full energy sensitivity achieved thus far is not statistically viable for fast and accurate light yield energy calibration from the new scintillators. The Compton edge in measured gamma-ray spectrum has been found as an alternate gamma-ray spectrum feature that can be exploited for characterizing the light yield energy from the newly developed plastic scintillators. In this study we present technique implemented for accurate light yield energy calibration using the Compton edge. Results obtained were very encouraging and promise the possibility of using the Compton edge for energy calibration in detectors with poor energy resolution such as plastic and liquid scintillators.

More Details

Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties

Cordaro, Joseph G.; Feng, Patrick L.; Mengesha, Wondwosen M.; Murtagh, Dustin M.; Anstey, Mitchell A.

Two types of water - containing liquid scintillation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In the second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solution microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase change comes from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of reactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presence of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the significance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.

More Details

Synthesis of water-soluble mono- and ditopic imidazoliums for carbene ligands

Sandia journal manuscript; Not yet accepted for publication

Anstey, Mitchell A.; Cordaro, Joseph G.; Feng, Patrick L.; Murtagh, Dustin M.; Mengesha, Wondwosen M.; Stavila, Vitalie S.

Synthesis of ditopic imidazoliums was achieved using a modular step-wise procedure. The procedure itself is amenable to a wide array of functional groups that can be incorporated into the imidazolium architecture. The resulting compounds range from ditopic zwitterions to highly-soluble dicationic aromatics

More Details

Advanced plastic scintillators for fast neutron discrimination

Feng, Patrick L.; Anstey, Mitchell A.; Doty, Fred P.; Mengesha, Wondwosen M.

The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

More Details
Results 1–25 of 29
Results 1–25 of 29