Publications

Results 1–25 of 26
Skip to search filters

Conceptual designs of 300-TW and 800-TW pulsed-power accelerators

Stygar, William A.; Fowler, William E.; Gomez, Matthew R.; Harmon, Roger L.; Herrmann, Mark H.; Huber, Dale L.; Hutsel, Brian T.; Bailey, James E.; Jones, Michael J.; Jones, Peter A.; Leckbee, Joshua L.; Lee, James R.; Lewis, Scot A.; Long, Finis W.; Lopez, Mike R.; Lucero, Diego J.; Matzen, M.K.; Mazarakis, Michael G.; McBride, Ryan D.; McKee, George R.; Nakhleh, Charles N.; Owen, Albert C.; Rochau, G.A.; Savage, Mark E.; Schwarz, Jens S.; Sefkow, Adam B.; Sinars, Daniel S.; Stoltzfus, Brian S.; Vesey, Roger A.; Wakeland, P.; Cuneo, M.E.; Flicker, Dawn G.; Focia, Ronald J.

Abstract not provided.

Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator

Physical Review Letters

McBride, Ryan D.; Peterson, Kyle J.; Sefkow, Adam B.; Nakhleh, Charles N.; Laspe, Amy R.; Lopez, Mike R.; Smith, Ian C.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Slutz, Stephen A.; Rogers, Thomas J.; Jennings, Christopher A.; Sinars, Daniel S.; Cuneo, M.E.; Herrmann, Mark H.; Lemke, Raymond W.; Martin, Matthew; Vesey, Roger A.

Abstract not provided.

Measurements of Magneto-Rayleigh-Taylor instability growth in initially solid liners on the Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Slutz, Stephen A.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Jennings, Christopher A.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners

Physics of Plasmas

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon S.; Slutz, Stephen A.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; McBride, Ryan D.; Cuneo, M.E.; Jennings, Christopher A.; Peterson, Kyle J.; Vesey, Roger A.; Nakhleh, Charles N.

Abstract not provided.

Total x-ray power improvement on recent wire array experiments on the Z machine

Jones, Michael J.; Ampleford, David A.; Cuneo, M.E.; Jennings, Christopher A.; Jones, Brent M.; Lopez, Mike R.; Rochau, G.A.; Savage, Mark E.

Recent experiments on the refurbished Z-machine were conducted using large diameter stainless steel arrays which produced x-ray powers of 260 TW. Follow-up experiments were then conducted utilizing tungsten wires with approximately the same total mass with the hypothesis that the total x-ray power would increase. On the large diameter tungsten experiments, the x-ray power averaged over 300 TW and the total x-ray energy was greater than 2MJ. Different analysis techniques for inferring the x-ray power will be described in detail.

More Details

Measurements of Magneto-Rayleigh-Taylor instability growth in solid liners on the 20 MA Z facility

Sinars, Daniel S.; Edens, Aaron E.; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon S.; Bennett, Guy R.; Atherton, B.W.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Slutz, Stephen A.; Herrmann, Mark H.; Cuneo, M.E.; Peterson, Kyle J.; McBride, Ryan D.; Vesey, Roger A.; Nakhleh, Charles N.; Tomlinson, Kurt T.

The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 {micro}s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 {micro}m, dimensions similar to magnetically-driven ICF target designs [1]. In most tests the MRT instability was seeded with sinusoidal perturbations ({lambda} = 200, 400 {micro}m, peak-to-valley amplitudes of 10, 20 {micro}m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 {micro}m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads [1] match the features seen except at the smallest scales (<50 {micro}m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.

More Details
Results 1–25 of 26
Results 1–25 of 26