Publications

1 Result
Skip to search filters

Optical Polarization Based Genomic Sensor

Polsky, Ronen P.; Appelhans, Leah A.; Wheeler, David R.; Jungjohann, Katherine L.; Hayes, Dulce C.; Campbell, DeAnna M.; Rudolph, Angela R.; Rivas, Rhiana R.; Zubelewicz, Michael C.; Shreve, Andrew S.; Graves, Steve G.; Brozik, Susan M.

Optical fluorescence-based DNA assays are commonly used for pathogen detection and consist of an optical substrate containing DNA capture molecules, binding of target RNA or DNA sequences, followed by detection of the hybridization event with a fluorescent probe. Though fluorescence detection can offer exquisite signal-to-background ratios, with high specificity, vast opportunities exist to improve current optical-based genomic sensing approaches. For these reasons, there is a clear need to explore alternative optical sensing paradigms to alleviate these restrictions. Bio-templated nanomaterial synthesis has become a powerful concept for developing new platforms for bio-sensing, as the biomolecule of interest can act as part of the sensing transducer mechanism. We explored the use of DNA origami structures to immobilize gold nanoparticles in very precise localized arrangements producing unique optical absorption properties with implications in novel DNA sensing schemes. We also explored the use of in-situ TEM as a novel characterization method for DNA-nanoparticle assemblies.

More Details
1 Result
1 Result