Compact, Pull-in-Free Electrostatic MEMS Actuated Tunable Ring Resonator for Optical Multiplexing
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report details results of a one-year LDRD to understand the dynamics, figures of merit, and fabrication possibilities for levitating a micro-scale, disk-shaped dielectric in an optical field. Important metrics are the stability, positional uncertainty, and required optical power to maintain levitation. Much of the results are contained in a publication written by our academic alliance collaborators. Initial structures were grown at Sandia labs and a test fabrication flow was executed. Owing to our strength in VCSEL lasers, we were particularly interested in calculations and fabrication flows that could be compatible with a VCSEL light source.
Optics InfoBase Conference Papers
We report experimental and numerical developments extending the operating range of vanadium dioxide based optical limiters into the short-wavelength infrared. Pixelated sensor elements have been fabricated which show optically-triggered limiting of a 2.7 µm probe.
Abstract not provided.
Scientific Reports
Optical polarizers encompass a class of anisotropic materials that pass-through discrete orientations of light and are found in wide-ranging technologies, from windows and glasses to cameras, digital displays and photonic devices. The wire-grids, ordered surfaces, and aligned nanomaterials used to make polarized films cannot be easily reconfigured once aligned, limiting their use to stationary cross-polarizers in, for example, liquid crystal displays. Here we describe a supramolecular material set and patterning approach where the polarization angle in stand-alone films can be precisely defined at the single pixel level and reconfigured following initial alignment. This capability enables new routes for non-binary information storage, retrieval, and intrinsic encryption, and it suggests future technologies such as photonic chips that can be reconfigured using non-contact patterning.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Functional Materials
Transparent conducting oxides, such as doped indium oxide, zinc oxide, and cadmium oxide (CdO), have recently attracted attention as tailorable materials for applications in nanophotonic and plasmonic devices such as low-loss modulators and all-optical switches due to their tunable optical properties, fast optical response, and low losses. In this work, optically induced extraordinarily large reflection changes (up to 135%) are demonstrated in bulk CdO films in the mid-infrared wavelength range close to the epsilon near zero (ENZ) point. To develop a better understanding of how doping level affects the static and dynamic optical properties of CdO, the evolution of the optical properties with yttrium (Y) doping is investigated. An increase in the metallicity and a blueshift of the ENZ point with increasing Y-concentrations is observed. Broadband all-optical switching from near-infrared to mid-infrared wavelengths is demonstrated. The major photoexcited carrier relaxation mechanisms in CdO are identified and it is shown that the relaxation times can be significantly reduced by increasing the dopant concentration in the film. This work could pave the way to practical dynamic and passive optical and plasmonic devices with doped CdO spanning wavelengths from the ultraviolet to the mid-infrared region.
Review of Scientific Instruments
Fast X-ray detectors are critical tools in pulsed power and fusion applications, where detector impulse response of a nanosecond or better is often required. Semiconductor detectors can create fast, sensitive devices with extensive operational flexibility. There is typically a trade-off between detector sensitivity and speed, but higher atomic number absorbers can increase hard X-ray absorption without increasing the charge collection time, provided carriers achieve high velocity. This paper presents X-ray pulse characterization conducted at the Advanced Photon Source of X-ray absorption efficiency and temporal impulse response of current-mode semiconductor X-ray detectors composed of Si, GaAs, and CdTe.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.