Optimization of Silver Fire Electrode Process
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Ceramic based nanocomposites have recently demonstrated the ability to provide enhanced permittivity, increased dielectric breakdown strength, and reduced electromechanical strain making them potential materials systems for high energy density applications. A systematic characterization and optimization of barium titanate and PLZT based nanoparticle composites employing a glass or polymer matrix to yield a high energy density component will be presented. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric/ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.
Abstract not provided.
Abstract not provided.
Attractive for numerous technological applications, ferroelectronic oxides constitute an important class of multifunctional compounds. Intense experimental efforts have been made recently in synthesizing, processing and understanding ferroelectric nanostructures. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using several solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric and ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.
The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.
Abstract not provided.
Abstract not provided.
This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.
The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.