Publications

6 Results
Skip to search filters

Foundations of Rigorous Cyber Experimentation

Stickland, Michael S.; Li, Justin D.; Swiler, Laura P.; Tarman, Thomas D.

This report presents the results of the “Foundations of Rigorous Cyber Experimentation” (FORCE) Laboratory Directed Research and Development (LDRD) project. This project is a companion project to the “Science and Engineering of Cyber security through Uncertainty quantification and Rigorous Experimentation” (SECURE) Grand Challenge LDRD project. This project leverages the offline, controlled nature of cyber experimentation technologies in general, and emulation testbeds in particular, to assess how uncertainties in network conditions affect uncertainties in key metrics. We conduct extensive experimentation using a Firewheel emulation-based cyber testbed model of Invisible Internet Project (I2P) networks to understand a de-anonymization attack formerly presented in the literature. Our goals in this analysis are to see if we can leverage emulation testbeds to produce reliably repeatable experimental networks at scale, identify significant parameters influencing experimental results, replicate the previous results, quantify uncertainty associated with the predictions, and apply multi-fidelity techniques to forecast results to real-world network scales. The I2P networks we study are up to three orders of magnitude larger than the networks studied in SECURE and presented additional challenges to identify significant parameters. The key contributions of this project are the application of SECURE techniques such as UQ to a scenario of interest and scaling the SECURE techniques to larger network sizes. This report describes the experimental methods and results of these studies in more detail. In addition, the process of constructing these large-scale experiments tested the limits of the Firewheel emulation-based technologies. Therefore, another contribution of this work is that it informed the Firewheel developers of scaling limitations, which were subsequently corrected.

More Details

SNL software manual for the ACS Data Analytics Project

Stearley, Jon S.; Robinson, David G.; Hooper, Russell H.; Stickland, Michael S.; McLendon, William C.; Rodrigues, Arun

In the ACS Data Analytics Project (also known as 'YumYum'), a supercomputer is modeled as a graph of components and dependencies, jobs and faults are simulated, and component fault rates are estimated using the graph structure and job pass/fail outcomes. This report documents the successful completion of all SNL deliverables and tasks, describes the software written by SNL for the project, and presents the data it generates. Readers should understand what the software tools are, how they fit together, and how to use them to reproduce the presented data and additional experiments as desired. The SNL YumYum tools provide the novel simulation and inference capabilities desired by ACS. SNL also developed and implemented a new algorithm, which provides faster estimates, at finer component granularity, on arbitrary directed acyclic graphs.

More Details

Natural language processing-based COTS software and related technologies survey

Eaton, Shelley M.; Stickland, Michael S.; Eaton, Shelley M.; Conrad, Gregory N.

More Details
6 Results
6 Results