Publications

39 Results
Skip to search filters

MalGen: Malware Generation with Specific Behaviors to Improve Machine Learning-based Detectors

Smith, Michael R.; Carbajal, Armida J.; Domschot, Eva D.; Johnson, Nicholas J.; Goyal, Akul A.; Lamb, Christopher L.; Lubars, Joseph L.; Kegelmeyer, William P.; Krishnakumar, Raga K.; Quynn, Sophie Q.; Ramyaa, Ramyaa R.; Verzi, Stephen J.; Zhou, Xin Z.

In recent years, infections and damage caused by malware have increased at exponential rates. At the same time, machine learning (ML) techniques have shown tremendous promise in many domains, often out performing human efforts by learning from large amounts of data. Results in the open literature suggest that ML is able to provide similar results for malware detection, achieving greater than 99% classifcation accuracy [49]. However, the same detection rates when applied in deployed settings have not been achieved. Malware is distinct from many other domains in which ML has shown success in that (1) it purposefully tries to hide, leading to noisy labels and (2) often its behavior is similar to benign software only differing in intent, among other complicating factors. This report details the reasons for the diffcultly of detecting novel malware by ML methods and offers solutions to improve the detection of novel malware.

More Details

SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning

Smith, Michael R.; Acquesta, Erin A.; Ames, Arlo L.; Carey, Alycia N.; Cueller, Christopher R.; Field, Richard V.; Maxfield, Trevor M.; Mitchell, Scott A.; Morris, Elizabeth S.; Moss, Blake C.; Nyre-Yu, Megan N.; Rushdi, Ahmad R.; Stites, Mallory C.; Smutz, Charles S.; Zhou, Xin Z.

This report details the results of a three-fold investigation of sensitivity analysis (SA) for machine learning (ML) explainability (MLE): (1) the mathematical assessment of the fidelity of an explanation with respect to a learned ML model, (2) quantifying the trustworthiness of a prediction, and (3) the impact of MLE on the efficiency of end-users through multiple users studies. We focused on the cybersecurity domain as the data is inherently non-intuitive. As ML is being using in an increasing number of domains, including domains where being wrong can elicit high consequences, MLE has been proposed as a means of generating trust in a learned ML models by end users. However, little analysis has been performed to determine if the explanations accurately represent the target model and they themselves should be trusted beyond subjective inspection. Current state-of-the-art MLE techniques only provide a list of important features based on heuristic measures and/or make certain assumptions about the data and the model which are not representative of the real-world data and models. Further, most are designed without considering the usefulness by an end-user in a broader context. To address these issues, we present a notion of explanation fidelity based on Shapley values from cooperative game theory. We find that all of the investigated MLE explainability methods produce explanations that are incongruent with the ML model that is being explained. This is because they make critical assumptions about feature independence and linear feature interactions for computational reasons. We also find that in deployed, explanations are rarely used due to a variety of reason including that there are several other tools which are trusted more than the explanations and there is little incentive to use the explanations. In the cases when the explanations are used, we found that there is the danger that explanations persuade the end users to wrongly accept false positives and false negatives. However, ML model developers and maintainers find the explanations more useful to help ensure that the ML model does not have obvious biases. In light of these findings, we suggest a number of future directions including developing MLE methods that directly model non-linear model interactions and including design principles that take into account the usefulness of explanations to the end user. We also augment explanations with a set of trustworthiness measures that measure geometric aspects of the data to determine if the model output should be trusted.

More Details

Sage Advice? The Impacts of Explanations for Machine Learning Models on Human Decision-Making in Spam Detection

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Stites, Mallory C.; Nyre-Yu, Megan N.; Moss, Blake C.; Smutz, Charles S.; Smith, Michael R.

The impact of machine learning (ML) explanations and different attributes of explanations on human performance was investigated in a simulated spam detection task. Participants decided whether the metadata presented about an email indicated that it was spam or benign. The task was completed with the aid of a ML model. The ML model’s prediction was displayed on every trial. The inclusion of an explanation and, if an explanation was presented, attributes of the explanation were manipulated within subjects: the number of model input features (3, 7) and visualization of feature importance values (graph, table), as was trial type (i.e., hit, false alarm). Overall model accuracy (50% vs 88%) was manipulated between subjects, and user trust in the model was measured as an individual difference metric. Results suggest that a user’s trust in the model had the largest impact on the decision process. The users showed better performance with a more accurate model, but no differences in accuracy based on number of input features or visualization condition. Rather, users were more likely to detect false alarms made by the more accurate model; they were also more likely to comply with a model “miss” when more model explanation was provided. Finally, response times were longer in individuals reporting low model trust, especially when they did not comply with the model’s prediction. Our findings suggest that the factors impacting the efficacy of ML explanations depends, minimally, on the task, the overall model accuracy, the likelihood of different model errors, and user trust.

More Details

Utilizing reinforcement learning to continuously improve a primitive-based motion planner

AIAA Scitech 2021 Forum

Goddard, Zachary C.; Wardlaw, Kenneth; Krishnan, Rohith; Tsiotras, Panagiotis; Smith, Michael R.; Sena, Mary R.; Parish, Julie M.; Mazumdar, Anirban

This paper describes how the performance of motion primitive based planning algorithms can be improved using reinforcement learning. Specifically, we describe and evaluate a framework for policy improvement via the discovery of new motion primitives. Our approach combines the predictable behavior of deterministic planning methods with the exploration capability of reinforcement learning. The framework consists of three phases: evaluation, exploration, and extraction. This framework can be iterated continuously to provide successive improvement. The evaluation step scores the performance of a motion primitive library using value iteration to create a cost map. A local difference metric is then used to identify regions that need improvement. The exploration step utilizes reinforcement learning to examine new trajectories in the regions of greatest need. The extraction step encodes the agent’s experiences into new primitives. The framework is tested on a point-to-point navigation task using a 6DOF nonlinear F-16 model. One iteration of the framework discovered 17 new primitives and provided a maximum planning time reduction of 96.91%. After 3 full iterations, 123 primitives were added with a maximum time reduction of 97.39%. The proposed framework is easily extensible to a range of vehicles, environments, and cost functions.

More Details

Mind the Gap: On Bridging the Semantic Gap between Machine Learning and Malware Analysis

AISec 2020 - Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security

Smith, Michael R.; Johnson, Nicholas T.; Ingram, Joey; Carbajal, Armida J.; Haus, Bridget I.; Domschot, Eva; Ramyaa, Ramyaa; Lamb, Christopher L.; Verzi, Stephen J.; Kegelmeyer, William P.

Machine learning (ML) techniques are being used to detect increasing amounts of malware and variants. Despite successful applications of ML, we hypothesize that the full potential of ML is not realized in malware analysis (MA) due to a semantic gap between the ML and MA communities-as demonstrated in the data that is used. Due in part to the available data, ML has primarily focused on detection whereas MA is also interested in identifying behaviors. We review existing open-source malware datasets used in ML and find a lack of behavioral information that could facilitate stronger impact by ML in MA. As a first step in bridging this gap, we label existing data with behavioral information using open-source MA reports-1) altering the analysis from identifying malware to identifying behaviors, 2)~aligning ML better with MA, and 3)~allowing ML models to generalize to novel malware in a zero/few-shot learning manner. We classify the behavior of a malware family not seen during training using transfer learning from a state-of-the-art model for malware family classification and achieve 57%-84% accuracy on behavioral identification but fail to outperform the baseline set by a majority class predictor. This highlights opportunities for improvement on this task related to the data representation, the need for malware specific ML techniques, and a larger training set of malware samples labeled with behaviors.

More Details

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Frontiers in Computational Neuroscience

Chance, Frances S.; Aimone, James B.; Musuvathy, Srideep M.; Smith, Michael R.; Vineyard, Craig M.; Wang, Felix W.

Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial neural networks. More recently, notable recent AI advances, for example the growing popularity of reinforcement learning, often appear more aligned with cognitive neuroscience or psychology, focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to enter a new era of large-scale high-resolution data and appears more focused on underlying neural mechanisms or architectures that can, at times, seem rather removed from functional descriptions. While this might seem to foretell a new generation of AI approaches arising from a deeper exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear. Here we discuss cultural differences between the two fields, including divergent priorities that should be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed two very different applications that at times require potentially conflicting perspectives. We highlight small but significant cultural shifts that we feel would greatly facilitate increased synergy between the two fields.

More Details

Dynamic Analysis of Executables to Detect and Characterize Malware

Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018

Smith, Michael R.; Ingram, Joey; Lamb, Christopher; Draelos, Timothy; Doak, Justin; Aimone, James; James, Conrad

Malware detection and remediation is an on-going task for computer security and IT professionals. Here, we examine the use of neural algorithms to detect malware using the system calls generated by executables-alleviating attempts at obfuscation as the behavior is monitored. We examine several deep learning techniques, and liquid state machines baselined against a random forest. The experiments examine the effects of concept drift to understand how well the algorithms generalize to novel malware samples by testing them on data that was collected after the training data. The results suggest that each of the examined machine learning algorithms is a viable solution to detect malware-achieving between 90% and 95% class-averaged accuracy (CAA). In real-world scenarios, the performance evaluation on an operational network may not match the performance achieved in training. Namely, the CAA may be about the same, but the values for precision and recall over the malware can change significantly. We structure experiments to highlight these caveats and offer insights into expected performance in operational environments. In addition, we use the induced models to better understand what differentiates malware samples from goodware, which can further be used as a forensics tool to provide directions for investigation and remediation.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron J.; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details

A novel digital neuromorphic architecture efficiently facilitating complex synaptic response functions applied to liquid state machines

Proceedings of the International Joint Conference on Neural Networks

Smith, Michael R.; Hill, Aaron J.; Carlson, Kristofor D.; Vineyard, Craig M.; Donaldson, Jonathon W.; Follett, David R.; Follett, Pamela L.; Naegle, John H.; James, Conrad D.; Aimone, James B.

Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU - demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.

More Details
39 Results
39 Results