In this work, we prove the existence of cascaded second-order nonlinearities in a dielectric metasurface by analyzing the second and third wave mixing signal in conjunction with crystal symmetry and polarization selection rules.
We demonstrate an extremely nonlinear all-dielectric metasurface that employs intersubband polaritons to achieve a second-harmonic conversion coefficient of 5 x 10-4 W-1 and second-harmonic power conversion efficiency of 0.015% at nominal pump intensities of 11 kW/cm2. Furthermore, through heterostructure design, we achieve microscopic control of the nonlinearity and demonstrate suppression or enhancement of second-harmonic generation by controlling the polarity of the resonant χ(2).
Ultrafast all-optical switching using Mie resonant metasurfaces requires both on-demand tunability of the wavefront of the light and ultrafast time response. However, devising a switching mechanism that has a high contrast between its "on"and "off"states without compromising speed is challenging. Here, we report the design of a tunable Mie resonant metasurface that achieves this behavior. Our approach utilizes a diffractive array of semiconductor resonators that support both dipolar and quadrupolar Mie resonances. By balancing the strengths of the dipole and quadrupole resonances, we can suppress radiation into the first diffraction order, thus creating a clearly delineated "off"-state at the operating wavelength. Then, we use optical injection of free- carriers to spectrally shift the multipoles and rebalance the multipole strengths, thereby enabling radiation into the diffraction order - all on an ultrafast timescale. We demonstrate ultrafast off-to-on switching with Ion/Ioff ≈ 5 modulation of the diffracted intensity and ultrafast on-to-off switching with Ion/Ioff ≈ 9 modulation. Both switches exhibit a fast τtr ≈ 2.7 ps relaxation time at 215 μJ cm-2 pump fluence. Further, we show that for higher fluences, the temporal response of the metasurface is governed by thermo-optic effects. This combination of multipole engineering with lattice diffraction opens design pathways for tunable metasurface-based integrated devices.
Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.
In this work, we investigate the linear optical response of a dielectric metasurface made of vertically-oriented germanium ellipses deposited on walls of a micron-scale cubic silicon nitride unit cell support matrix.
The color of light is a fundamental property of electromagnetic radiation; as such, control of the frequency is a cornerstone of modern optics. Nonlinear materials are typically used to generate new frequencies, however the use of time-variant systems provides an alternative approach. Utilizing a metasurface that supports a high-quality factor resonance, we demonstrate that a rapidly shifting refractive index will induce frequency conversion of light that is confined in the nanoresonator meta-atoms. We experimentally observe this frequency conversion and develop a time-dependent coupled mode theory model that well describes the system. The intersection of high quality-factor resonances, active materials, and ultrafast transient spectroscopy leads to the demonstration of metasurfaces operating in a time-variant regime that enables enhanced control over light-matter interaction.
A wall-first variant of membrane projection lithography (MPL) is introduced which yields three-dimensional meta-films; mm-scale structures with micron-scale periodicity and 3D nm-scale unit cell structure. These meta-films combine aspects of photonic crystals, metamaterials and plasmonic nano antennas in their infrared scattering behavior. We present the fabrication approach, and modeling/IR characterization results.
Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.
A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.
The Lorentz-like effective medium resonance (LEMR) exhibited by the longitudinal effective permittivity of semiconductor hyperbolic metamaterials (SHMs) has been known for some time. However, direct observation of this resonance proved to be difficult. Herein, we experimentally demonstrate its existence by strongly coupling SHMs to plasmonic metasurfaces. We consider four strong coupling implementations of SHMs that exhibit different LEMR absorption profiles (both in frequency and in strength) to validate our approach.
High-harmonic generation (HHG) is a signature optical phenomenon of strongly driven, nonlinear optical systems. Specifically, the understanding of the HHG process in rare gases has played a key role in the development of attosecond science1. Recently, HHG has also been reported in solids, providing novel opportunities such as controlling strong-field and attosecond processes in dense optical media down to the nanoscale2. Here, we report HHG from a low-loss, indium-doped cadmium oxide thin film by leveraging the epsilon-near-zero (ENZ) effect3–8, whereby the real part of the material’s permittivity in certain spectral ranges vanishes, as well as the associated large resonant enhancement of the driving laser field. We find that ENZ-assisted harmonics exhibit a pronounced spectral redshift as well as linewidth broadening, resulting from the photo induced electron heating and the consequent time-dependent ENZ wavelength of the material. Our results provide a new platform to study strong-field and ultrafast electron dynamics in ENZ materials, reveal new degrees of freedom for spectral and temporal control of HHG, and open up the possibilities of compact solid-state attosecond light sources.
We demonstrate all-optical switching of high quality factor quasibound states in the continuum resonances in broken symmetry GaAs metasurfaces. By slightly breaking the symmetry of the GaAs nanoresonators, we enable leakage of symmetry protected bound states in the continuum (BICs) to free space that results in sharp spectral resonances with high quality factors of ∼500. We tune the resulting quasi-BIC resonances with ultrafast optical pumping at 800 nm and observe a 10 nm spectral blue shift of the resonance with pump fluences of less than 100 μJ cm-2. The spectral shift is achieved in an ultrafast time scale (<2.5 ps) and is caused by a shift in the refractive index mediated by the injection of free carriers into the GaAs resonators. An absolute reflectance change of 0.31 is measured with 150 μJ cm-2. Our results demonstrate a proof-of-concept that these broken symmetry metasurfaces can be modulated or switched at ultrafast switching speeds with higher contrast at low optical fluences (<100 μJ cm-2) than conventional Mie-metasurfaces.