Publications

29 Results
Skip to search filters

Equipment Testing Environment (ETE) Specification

Hahn, Andrew S.; Rowland, Michael T.; Karch, Benjamin K.; Bruneau, Robert J.; Valme, Romuald V.

Cyber security has been difficult to quantify from the perspective of defenders. The effort to develop a cyber-attack with some ability, function, or consequence has not been rigorously investigated in Operational Technologies. This specification defines a testing structure that allows conformal and repeatable cyber testing on equipment. The purpose of the ETE is to provide data necessary to analyze and reconstruct cyber-attack timelines, effects, and observables for training and development of Cyber Security Operation Centers. Standardizing the manner in which cyber security on equipment is investigated will allow a greater understanding of the progression of cyber attacks and potential mitigation and detection strategies in a scientifically rigorous fashion.

More Details

Using the Information Harm Triangle to Identify Risk-Informed Cybersecurity Strategies for Instrumentation and Control Systems

Nuclear Technology

Rowland, Michael T.; Maccarone, Lee M.; Clark, Andrew

The Information Harm Triangle (IHT) is a novel approach that aims to adapt intuitive engineering concepts to simplify defense in depth for instrumentation and control (I&C) systems at nuclear power plants. This approach combines digital harm, real-world harm, and unsafe control actions (UCAs) into a single graph named “Information Harm Triangle.” The IHT is based on the postulation that the consequences of cyberattacks targeting I&C systems can be expressed in terms of two orthogonal components: a component representing the magnitude of data harm (DH) (i.e., digital information harm) and a component representing physical information harm (PIH) (i.e., real-world harm, e.g., an inadvertent plant trip). The magnitude of the severity of the physical consequence is the aspect of risk that is of concern. The sum of these two components represents the total information harm. The IHT intuitively informs risk-informed cybersecurity strategies that employ independent measures that either act to prevent, reduce, or mitigate DH or PIH. Another aspect of the IHT is that the DH can result in cyber-initiated UCAs that result in severe physical consequences. The orthogonality of DH and PIH provides insights into designing effective defense in depth. Finally, the IHT can also represent cyberattacks that have the potential to impede, evade, or compromise countermeasures from taking appropriate action to reduce, stop, or mitigate the harm caused by such UCAs. Cyber-initiated UCAs transform DH to PIH.

More Details

Equipment Testing Environment (ETE) Process Specification

Hahn, Andrew S.; Karch, Benjamin K.; Bruneau, Robert J.; Rowland, Michael T.; Valme, Romuald V.

This document is intended to be utilized with the Equipment Test Environment being developed to provide a standard process by which the ETE can be validated. The ETE is developed with the intent of establishing cyber intrusion, data collection and through automation provide objective goals that provide repeatability. This testing process is being developed to interface with the Technical Area V physical protection system. The document will overview the testing structure, interfaces, device and network logging and data capture. Additionally, it will cover the testing procedure, criteria and constraints necessary to properly capture data and logs and record them for experimental data capture and analysis.

More Details

Security Evaluation of Smart Cards and Secure Tokens: Benefits and Drawbacks for Reducing Supply Chain Risks of Nuclear Power Plants

Rowland, Michael T.; Karch, Benjamin K.

The supply chain attack pathway is being increasingly used by adversaries to bypass security controls and gain unauthorized access to sensitive networks and equipment (e.g., Critical Digital Assets). Cyber-attacks targeting supply chain generally aim to compromise the environments, products, or services of vendors and suppliers to inject, add, or substitute authentic software and hardware with malicious elements. These malicious elements are deemed to be authentic as they arise from the vendor or supplier (i.e., the supply chain). This research aims to leverage findings and assumptions made from the previous report to determine the security benefits and drawbacks of a smart card- based hardware root of trust. Smart cards can provide devices inside Nuclear Power Plants (NPP) with a secure environment to store keys in and perform sensitive operations such as digital signature generation. These abilities can be leveraged to increase supply chain cybersecurity by autonomously providing NPP Licensees with reports on device integrity, authenticity and measurements of executable and non-executable data.

More Details

Evaluation of Joint Cyber/Safety Risk in Nuclear Power Systems

Clark, Andrew C.; James, Jacob J.; Mohmand, Jamal A.; Lamb, Christopher L.; Maccarone, Lee M.; Rowland, Michael T.

This report presents an analysis of the Emergency Core Cooling System (ECCS) for a generic Boiling Water Reactor (BWR)-4 NPP. The Electric Power Research Institute (EPRI) developed Hazards and Consequences Analysis for Digital Systems (HAZCADS) process is applied to the ECCS and its subsystems to identify unsafe control actions (UCAs) which act as possible cyber events of concern. The analysis is performed for two design basis events: Small-break Loss of Coolant Accident (SLOCA) and general transients (TRANS), such as unintended reactor trip. In previous work, HAZCADS UCAs were combined with other cyber-attack analysis to develop a risk-informed approach; however, this was for a single system. This report explores advanced systems engineering modeling approaches to model the interactions between digital assets across multiple systems which may be targeted by cyber adversaries. The complex and interdependent design of digital systems has the potential to introduce emergent cyber properties that are generally not covered by hazard analyses nor formal nuclear Probabilistic Risk Assessment (PRA). The R&D and supporting analysis presented here explores approaches to predict and manage how interdependent system properties effect risk. To show the potential impact of a successful cyber-attack to formal PRA event tree probabilities, HAZCADS analysis was also used. HAZCADS was also used to model the automatic depressurization system (ADS) automatic actuation. This analysis extended to an integrated system analysis for common-cause failure (CCF). In this aspect, the HAZCADS analysis continued by analyzing plant design details for system connectivity in support of critical plant functions. A dependency matrix was developed to depict the integrated functionality of the interconnected systems. Areas of potential CCF are indicated. Future work could include adversary attack development to show how CCF could be caused, resulting in PRA events. Across the multiple systems that comprise the ECCS, the analysis shows that the change in such probabilities was very different between systems. This indicates that some systems have a larger potential risk impact from successful cyber-attack or digital failure, which indicates a need for these systems to have a higher priority for design and defensive measures. Furthermore, we were able to establish that a risk analysis using any arbitrary threat model establishes an ordering of components with regard to cyber-risk. This ordering can be used to influence the overall system design with an eye to lowering risk, or as a way to understand real-time risk to operational systems based on a current threat landscape. Expert knowledge of both the analysis process and the system being analyzed is required to perform a HAZCADS analysis. The need for a tiered risk analysis is demonstrated by the results of this report.

More Details

A Review of Technologies that can Provide a 'Root of Trust' for Operational Technologies

Karch, Benjamin K.; Rowland, Michael T.

The supply chain attack pathway is being increasingly used by adversaries to bypass security controls and gain unauthorized access to sensitive networks and equipment (e.g., Critical Digital Assets). Cyber-attacks targeting supply chain generally aim to compromise the environments, products, or services of vendors and suppliers to inject, add, or substitute authentic software and hardware with malicious elements. These malicious elements are deemed to be authentic as they arise from the vendor or supplier (i.e., the supply chain). This research aims at providing a survey of technologies that have the potential to reduce exposure of sensitive networks and equipment to these attacks, thereby improving tamper resistance. The recent advances in the performance and capabilities of these technologies in recent years has increased their potential applications to reduce or mitigate exposure of the supply chain attack pathway. The focus being on providing an analysis of the benefits and disadvantages of smart cards, secure tokens, and elements to provide root of trust. This analysis provides evidence that these roots of trust can increase the technical capability of equipment and networks to authenticate changes to software and configuration thereby increasing resilience to some supply chain attacks, such as those related to logistics and ICT channels, but not development environment attacks.

More Details

Safety and Security Defense-in-Depth for Nuclear Power Plants

Clark, Andrew; Rowland, Michael T.

This report describes the risk-informed technical elements that will contribute to a defense-in-depth assessment for cybersecurity. Risk-informed cybersecurity must leverage the technical elements of a risk-informed approach appropriately in order to evaluate cybersecurity risk insights. HAZCADS and HAZOP+ are suitable methodologies to model the connection between digital harm and process hazards. Risk assessment modeling needs to be expanded beyond HAZCADS and HAZOP+ to consider the sequence of events that lead to plant consequences. Leveraging current practices in PRA can lead to categorization of digital assets and prioritizing digital assets commensurate with the risk. Ultimately, the culmination of cyber hazard methodologies, event sequence modeling, and digital asset categorization will facilitate a defense-in-depth assessment of cybersecurity.

More Details
29 Results
29 Results