Simultaneous data of the quasi-static compaction and electrical conductivity of porous, binary powder mixtures have been collected as a function of bulk density. The powder mixtures consist of a metal conductor, either titanium or iron, an insulator, and pores filled with ambient air. The data show a dependency of the conductivity in terms of relative bulk density and metal volume fraction on conductor type and conductor particle characteristics of size and shape. Finite element models using particle domains generated by discrete element method are used to simulate the bulk conductivity near its threshold while the general effective media equation is used to model the conductivity across the compression regime.
This Laboratory Directed Research and Development project developed and applied closely coupled experimental and computational tools to investigate powder compaction across multiple length scales. The primary motivation for this work is to provide connections between powder feedstock characteristics, processing conditions, and powder pellet properties in the context of powder-based energetic components manufacturing. We have focused our efforts on multicrystalline cellulose, a molecular crystalline surrogate material that is mechanically similar to several energetic materials of interest, but provides several advantages for fundamental investigations. We report extensive experimental characterization ranging in length scale from nanometers to macroscopic, bulk behavior. Experiments included nanoindentation of well-controlled, micron-scale pillar geometries milled into the surface of individual particles, single-particle crushing experiments, in-situ optical and computed tomography imaging of the compaction of multiple particles in different geometries, and bulk powder compaction. In order to capture the large plastic deformation and fracture of particles in computational models, we have advanced two distinct meshfree Lagrangian simulation techniques: 1.) bonded particle methods, which extend existing discrete element method capabilities in the Sandia-developed , open-source LAMMPS code to capture particle deformation and fracture and 2.) extensions of peridynamics for application to mesoscale powder compaction, including a novel material model that includes plasticity and creep. We have demonstrated both methods for simulations of single-particle crushing as well as mesoscale multi-particle compaction, with favorable comparisons to experimental data. We have used small-scale, mechanical characterization data to inform material models, and in-situ imaging of mesoscale particle structures to provide initial conditions for simulations. Both mesostructure porosity characteristics and overall stress-strain behavior were found to be in good agreement between simulations and experiments. We have thus demonstrated a novel multi-scale, closely coupled experimental and computational approach to the study of powder compaction. This enables a wide range of possible investigations into feedstock-process-structure relationships in powder-based materials, with immediate applications in energetic component manufacturing, as well as other particle-based components and processes.
Two key mechanical processes exist in the formation of powder compacts. These include the complex kinematics of particle rearrangement as the powder is densified and particle deformation leading to mechanical failure and fragmentation. Experiments measuring the time varying forces across a densifying powder bed have been performed in powders of microcrystalline cellulose with mean particle sizes between 0.4 and 1.2 mm. In these experiments, diagnostics measured the applied and transmitted loads and the bulk powder density. Any insight into the particle behavior must be inferred from deviations in the smoothly increasing stress-density compaction relationship. By incorporating a window in the compaction die body, simultaneous images of particle rearrangement and fracture at the confining window are captured. The images are post-processed in MATLAB® to track individual particle motion during compression. Complimentary discrete element method (DEM) simulations are presented and compared to experiment. The comparison provides insight into applying DEM methods for simulating large or permanent particle deformation and suggests areas for future study.
Particle characteristics can drastically influence the process-structure-property-performance aspects of granular materials in compression. We aim to computationally simulate the mechanical processes of stress redistribution in compacts including the kinematics of particle rearrangement during densification and particle deformation leading to fragmentation. Confined compression experiments are conducted with three sets of commercial microcrystalline cellulose particles nearly spherical in shape with different mean particle size. Experimentally measured compression curves from tall powder columns are fitted with the Kenkre et al. (J. of American Chemical Society, Vol. 79, No. 12) model. This model provides a basis to derive several common two-parameter literature models and as a framework to incorporate statistical representations of critical particle behaviors. We focus on the low-stress compression data and the model comparisons typically not discussed in the literature. Additional single particle compressions report fracture strength with particle size for comparison to the apparent particle strength extracted from bulk compression data.
The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. This work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. In addition, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. Using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collected at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.
The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.
A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.