Radiation Effects in Electronics: From Basic Physics to Experimental and Simulation Capabilities
Abstract not provided.
Abstract not provided.
Applied Physics Letters
The rapidly increasing use of electronics in high-radiation environments and the continued evolution in transistor architectures and materials demand improved methods to characterize the potential damaging effects of radiation on device performance. Here, electron-beam-induced current is used to map hot-carrier transport in model metal-oxide semiconductor field-effect transistors irradiated with a 300 KeV focused He+ beam as a localized line spanning across the gate and bulk Si. By correlating the damage to the electronic properties and combining these results with simulations, the contribution of spatially localized radiation damage on the device characteristics is obtained. This identified damage, caused by the He+ beam, is attributed to localized interfacial Pb centers and delocalized positive fixed-charges, as surmised from simulations. Comprehension of the long-term interaction and mobility of radiation-induced damage are key for future design of rad-hard devices.
IEEE Transactions on Nuclear Science
Integration-technology feature shrink increases computing-system susceptibility to single-event effects (SEE). While modeling SEE faults will be critical, an integrated processor's scope makes physically correct modeling computationally intractable. Without useful models, presilicon evaluation of fault-tolerance approaches becomes impossible. To incorporate accurate transistor-level effects at a system scope, we present a multiscale simulation framework. Charge collection at the 1) device level determines 2) circuit-level transient duration and state-upset likelihood. Circuit effects, in turn, impact 3) register-transfer-level architecture-state corruption visible at 4) the system level. Thus, the physically accurate effects of SEEs in large-scale systems, executed on a high-performance computing (HPC) simulator, could be used to drive cross-layer radiation hardening by design. We demonstrate the capabilities of this model with two case studies. First, we determine a D flip-flop's sensitivity at the transistor level on 14-nm FinFet technology, validating the model against published cross sections. Second, we track and estimate faults in a microprocessor without interlocked pipelined stages (MIPS) processor for Adams 90% worst case environment in an isotropic space environment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
With the growing interest to explore Jupiter's moons, technologies with +10 Mrad(Si) tolerance are now needed, to survive the Jovian environment. Conductive-bridging random access memory (CBRAM) is a nonvolatile memory that has shown a high tolerance to total ionizing dose (TID). However, it is not well understood how CBRAM behaves in an energetic ion environment where displacement damage (DD) effects may also be an issue. In this paper, the response of CBRAM to 100-keV Li, 1-MeV Ta, and 200-keV Si ion irradiations is examined. Ion bombardment was performed with increasing fluence steps until the CBRAM devices failed to hold their programed state. The TID and DD dose (DDD) at the fluence of failure were calculated and compared against tested ion species. Results indicate that failures are more highly correlated with TID than DDD. DC cycling tests were performed during 100-keV Li irradiations and evidence was found that the mobile Ag ion supply diminished with increasing fluence. The cycling results, in addition to prior 14-MeV neutron work, suggest that DD may play a role in the eventual failure of a CBRAM device in a combined radiation environment.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Here, the effect of a linear accelerator’s (LINAC’s) microstructure (i.e., train of narrow pulses) on devices and the associated transient photocurrent models are investigated. The data indicate that the photocurrent response of Si-based RF bipolar junction transistors and RF p-i-n diodes is considerably higher when taking into account the microstructure effects. Similarly, the response of diamond, SiO2, and GaAs photoconductive detectors (standard radiation diagnostics) is higher when taking into account the microstructure. This has obvious hardness assurance implications when assessing the transient response of devices because the measured photocurrent and dose rate levels could be underestimated if microstructure effects are not captured. Indeed, the rate the energy is deposited in a material during the microstructure peaks is much higher than the filtered rate which is traditionally measured. In addition, photocurrent models developed with filtered LINAC data may be inherently inaccurate if a device is able to respond to the microstructure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The effects of radiation-induced defects and statistical variation in the dose and energy of MOSFET channel implants in a modern bulk CMOS technology are modeled using a process simulator in combination with analytical computations. The model integrates doping profiles obtained from process simulations and experimentally determined defect potentials into implicit surface potential equations. Solutions to these equations are used to model radiation-induced edge leakage currents in 90-nm bulk CMOS n-channel MOSFETs. The results indicate that slight variations in the channel implant parameters can have a significant impact on the doping profile along the shallow trench isolation sidewall and thus the radiation-induced edge leakage currents.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Aerospace Conference Proceedings
In this paper, we provide an overview of the current knowledge of radiation effects in anion-based memristive devices. We will specifically look at the impact of high dose rate ionizing radiation, total ionizing dose (TID), and heavy ions on the electrical characteristics of tantalum oxide (TaOx), titanium dioxide (TiO2), and hafnium oxide (HfOx) memristors. The primary emphasis, however, will be placed on TaOx memristors. While there are several other anion-based memristive devices being fabricated by the semiconductor community for possible use in valence change memories, most of the present radiation work has focused on one of these types of devices. There have also been numerous studies on radiation effects in cation-based chalcogenides such as germanium sulfides and selenides. However, that will not be discussed in this paper.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed.
IEEE Transactions on Nuclear Science
The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed.
IEEE Transactions on Nuclear Science
This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.
Abstract not provided.
Abstract not provided.
IEEE Aerospace Conference Proceedings
This paper evaluates the effects of ionizing radiation on tantalum oxide (TaOx) memristors. The data obtained from 60Co gamma ray and 10 keV X-ray ionizing radiation experiments indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state after a total ionizing dose (TID) step stress threshold has been surpassed. During irradiation, the devices were floating, grounded, or biased with a 1 Hz square wave with an amplitude of ±100 mV. While floating the terminals is not a typical bias condition within a circuit, it is speculated that this condition might be worst-case because of the lack of a discharge path. If a read measurement is performed prior to reaching the charge threshold, the devices 'reset' back to a pre-irradiation state. This suggests that the devices do not have a cumulative TID effect. However, it was observed that having a continuous bias on the device during the TID exposure did not always have the same effect. The TID threshold level at which the devices switch resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. After a radiation-induced resistance change, all of the devices could be reset and still functioned properly. When the devices were set into a low resistance on-state prior to irradiation, there was not a significant variation in the resistance post-irradiation (i.e., the devices were still in the on-state). Overall, the memristor TID performance is promising and could potentially enable the discovery of a radiation-hardened nonvolatile memory technology to be used in space and aerospace applications. © 2014 IEEE.
In this report, measurements of the prompt radiation-induced conductivity (RIC) in 3 mil samples of Pyralux® are presented as a function of dose rate, pulse width, and applied bias. The experiments were conducted with the Medusa linear accelerator (LINAC) located at the Little Mountain Test Facility (LMTF) near Ogden, UT. The nominal electron energy for the LINAC is 20 MeV. Prompt conduction current data were obtained for dose rates ranging from ~2 x 109 rad(Si)/s to ~1.1 x 1011 rad(Si)/s and for nominal pulse widths of 50 ns and 500 ns. At a given dose rate, the applied bias across the samples was stepped between -1500 V and 1500 V. Calculated values of the prompt RIC varied between 1.39x10-8 Ω-1 · m-1 and 2.67x10-7 Ω-1 · m-1 and the prompt RIC coefficient varied between 1.25x10-18 Ω-1 · m-1/(rad/s) and 1.93x10-17 Ω-1 · m-1/(rad/s).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.