Operability thresholds that differentiate between functional RP-87 exploding bridge wire (EBW) detonators and nonfunctional RP-87 EBW detonators (duds) were determined by measuring the time delay between initiation and early wall movement (function time). The detonators were inserted into an externally heated hollow cylinder of aluminum and fired with current flow from a charged capacitor using an exploding bridge wire (EBW initiated). Functioning detonators responded like unheated pristine detonators when the function time was 4 μs or less. The operability thresholds of the detonators were characterized with a simple decomposition cookoff model calibrated using a modified version of the Sandia Instrumented Thermal Ignition (SITI) experiment. These thresholds are based on the calculated state of the PETN when the detonators fire. The operability threshold is proportional to the positive temperature difference (ΔT) between the maximum temperature within the PETN and the onset of decomposition (∼406 K). The temperature difference alone was not sufficient to define the operability threshold. The operability threshold was also proportional to the time that the PETN had been at elevated temperatures. That is, failure was proportional to both temperature and reaction rate. The reacted gas fraction is used in the current work for the reaction correlation. Melting of PETN also had a significant effect on the operability threshold. Detonator failure occurred when the maximum temperature exceeded the nominal melting point of PETN (414 K) for 45±5 s or more.
Transforming polymorphs, melting, and boiling are physical processes that can accelerate decomposition rates during cookoff of PETN and make measurements difficult. For example, splashing liquids from large bubbles filled with decomposition products clog pressure tubing in sealed experiments. Boil over can also extinguish thermal excursions in vented experiments making ignition difficult. For better measurements, we have modified the Sandia Instrumented Thermal Ignition (SITI) experiment to obtain better sealed and vented cookoff data for PETN by reducing the sample size and including additional gas space to prevent clogged tubing and boil over. Ignition times were not affected by 1) increasing the gas space by a factor of 3 in sealed SITI experiments or by 2) venting the decomposition gasses. That is, thermal ignition of PETN is not pressure dependent and the rate-limiting step during PETN decomposition likely occurs in the condensed phase. A simple decomposition model was calibrated using these observations and includes rate acceleration caused by melting and boiling. The model is used to predict internal temperatures, pressurization, and thermal ignition in a wide variety of experiments. The model is also used with SITI data to estimate the previously unreported latent enthalpy (5 J/g) associated with the α (PETN-I) to β (PETN-II) polymorphic phase transformation of PETN.
We have completed a series of both vented and sealed cookoff experiments of black powder and smokeless powder in our Sandia Instrumented Thermal Ignition (SITI) apparatus at bulk densities of 1078 and 729 kg/m3, respectively. The confining aluminum cylinder was ramped from room temperature to a set point temperature and then held at the setpoint temperature until ignition. The setpoint temperatures varied between 495 to 523 K for the black powder and 401 to 412 K for the more sensitive smokeless powder. The vented experiments show a significant delay in thermal ignition, indicating that the ignition is dependent on pressure. Post experimental debris shows greater violence for our smokeless powder experiments than our black powder experiments. A simplified universal cookoff model (UCM) was calibrated using the black powder and smokeless powder SITI data and used to predict pressurization and thermal ignition. The current work presents the first calibration of the UCM with a double base propellant. This work also presents the first pressure-dependent cookoff model for black powder and smokeless powder.
In the present study, commercially available detonators with pentaerythritol tetranitrate (PETN) were subjected to elevated temperatures. The detonators were thermally ignited over a range of heating rates to measure ignition delay time and assess detonator violence. The violence of the detonator was quantified by measuring the velocity of the detonator closure disc (or "flyer"). The maximum flyer velocity of a thermally ignited detonator was comparable in magnitude to that obtained by initiating a room temperature pristine detonator with an exploding bridge wire (under the same confinement); however, the high flyer velocity was not an indication of deflagration to detonation transition (DDT) in the thermally ignited detonator. The detonator responded more violently than a thermally ignited detonator when initiated at 95% of the ignition delay time. Inoperability thresholds were also measured by varying the detonator temperature and the threshold was found to be sensitive at detonator temperatures below the melting point of PETN.
The solubility of RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) in TNT (2,4,6-trinitrotoluene) at elevated temperatures is required to accurately predict the response of Comp-B3 (60:40 RDX:TNT) during accidents involving fire. As the temperature increases, the TNT component melts, the RDX partially dissolves in the liquid TNT, and the remaining RDX melts (203 ∘C) as the Comp-B thermally ignites. In the current work, we used a differential scanning calorimeter (DSC) to estimate the solubility of RDX in TNT at the melting point of RDX. Most DSC measurements of Comp-B3 do not show an RDX melt endotherm. The absence of an endotherm associated with the RDX melt has been interpreted as RDX being completely dissolved in TNT before reaching the melting point. We have observed that the endotherm is not absent, but is masked by exothermic reactions occurring at these elevated temperatures. We have inhibited the exothermic reactions by venting our DSC samples and measuring the RDX melt endotherm in our Comp-B3 samples at about 203 ∘C. Using the measured heat flow associated with the RDX melt and the latent melting enthalpy of RDX, we have approximated the solubility of RDX in TNT to be roughly 50–100 g RDX per 100 g TNT. The broad range is based on corrections for exothermic reactions occurring as the RDX melts.
On June 30, 2020, a 0.87 gram PETN charge being pressed in the Rapid Prototyping Facility (RPF), unexpectedly initiated, resulting in destruction of the pressing fixture but no injuries or facility damage. In response, the Safety Review Board (SRB) met on Aug. 13, 2020 and Oct. 1, 2020 to review information collected following the incident, consider likely direct causes, and form recommendations.
Thermal conductivity has been determined for a variety of energetic materials (EMs) using finite element analysis (FEA) and cookoff data from the Sandia Instrumented Thermal Ignition (SITI) experiment. Materials studied include melt-cast, pressed, and low-density explosives. The low-density explosives were either prills or powders with some experiments run at pour density (not pressed). We have compared several of our thermal conductivities with those in the literature as well as investigated contact resistance between the confining aluminum and explosive, multidimensional heat transfer effects, and uncertainty in the thermocouple bead positions. We have determined that contact resistance is minimal in the SITI experiment, the heat transfer along the midplane is one-dimensional, and that uncertainty in the thermocouple location is greatest near the heated boundary. Our values of thermal conductivity can be used with kinetic mechanisms to accurately predict thermal profiles and energy dissipation during the cookoff of explosives.
We have completed a series of vented and sealed cookoff experiments of the ε-polymorph of CL-20 in our Sandia Instrumented Thermal Ignition (SITI) apparatus using both powder and pressed pellets at nominal densities of 313 ± 8 kg/m3 and 1030 ± 4 kg/m3, respectively. The boundary temperature of our aluminum confinement cylinder was ramped in 10 minutes from room temperature to a prescribed set-point temperature ranging between 448 nd 468 K and held at the set-point temperature until ignition. A universal cookoff model (UCM) has been calibrated using the ε-CL-20 SITI data to predict pressurization and thermal ignition of ε-CL-20. The ignition model was validated by using one-dimensional time-to-explosion (ODTX) ignition data from a different laboratory. We found that a thirtyfold increase in the reaction rates due to liquefaction at 520 K could explain the high temperature ODTX cookoff data. The model gives a plausible explanation of why melting is important in fast cookoff events involving CL-20. Our model also gives support to 520 K as the liquefaction point of CL-20, which has different values in the literature.
We have completed a series of small-scale cook-off experiments of ammonium nitrate (AN) prills in our Sandia Instrumented Thermal Ignition test at nominal packing densities of about 0.8 g/cm3. We increased the boundary temperature of our aluminum confinement cylinder from room temperature to a prescribed set-point temperature in 10 min. Our set-point temperature ranged from 508 to 538 K. The external temperature of the confining cylinder was held at the set-point temperature until ignition. We used type K thermocouples to measure temperatures associated with several polymorphic phase changes as well as melting and boiling. As the AN boiled, our thermocouples were destroyed by corrosion, which may have been caused by reaction of hot nitric acid (HNO3) with nickel to form nickel nitrate, Ni(NO3)2. Videos of the corroding thermocouples showed a green solution that was similar to the color of Ni(NO3)2. We found that ignition was imminent as the AN boiling point was exceeded. Ignition of the AN prills was modeled by solving the energy equation with an energy source due to desorption of moisture and decomposition of AN to form equilibrium products. A Boussinesq approximation was used in conjunction with the momentum equation to model flow of the liquid AN. We found that the prediction of ignition was not sensitive to small perturbations in the latent enthalpies.
We have used several configurations of the Sandia Instrumented Thermal Ignition (SITI) experiment to develop a pressure-dependent, four-step ignition model for a plastic bonded explosive (PBX 9407) consisting of 94 wt.% RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and a 6 wt.% VCTFE binder (vinyl chloride/chlorotrifluoroethylene copolymer). The four steps include desorption of water, decomposition of RDX to form equilibrium products, pressure-dependent decomposition of RDX forming equilibrium products, and decomposition of the binder to form hydrogen chloride and a nonvolatile residue (NVR). We address drying, binder decomposition, and decomposition of the RDX component from the pristine state through the melt and into ignition. We used Latin Hypercube Sampling (LHS) of the parameters to determine the sensitivity of the model to variation in the parameters. We also successfully validated the model using one-dimensional time-to-explosion (ODTX and P-ODTX) data from a different laboratory. Our SITI test matrix included 1) different densities ranging from 0.7 to 1.63 g/cm3, 2) free gas volumes ranging from 1.2 to 38 cm3, and 3) boundary temperatures ranging from 170 to 190 °C. We measured internal temperatures using embedded thermocouples at various radial locations as well as pressure using tubing that was connected from the free gas volume (ullage) to a pressure gauge. We also measured gas flow from our vented experiments. A borescope was included to obtain in situ video during some SITI experiments. We observed significant changes in the explosive volume prior to ignition. Our model, in conjunction with data observations, imply that internal accumulation of decomposition gases in high density PBX 9407 (90% of the theoretical maximum density) can contribute to significant strain whether or not the experiment is vented or sealed.
Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacements and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.
We have used a modified version of the Sandia Instrumented Thermal Ignition (SITI) experiment to develop a pressure-dependent, five-step ignition model for a plastic bonded explosive (PBX 9501) consisting of 95 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine (HMX), 2.5 wt% Estane® 5703 (a polyurethane thermoplastic), and 2.5 wt% of a nitroplasticizer (NP): BDNPA/F, a 50/50 wt% eutectic mixture bis(2,2-dinitropropyl)-acetal (BDNPA) and bis(2,2-dinitropropyl)-formal (BDNPF). The five steps include desorption of water, decomposition of the NP to form NO2, reaction of the NO2 with Estane® and HMX, and decomposition of HMX. The model was fit using our experiments and successfully validated with experiments from five other laboratories with scales ranging from about 2 g to more than 2.5 kg of PBX. Our experimental variables included density, confinement, free gas volume, and temperature. We measured internal temperatures, confinement pressure, and ignition time. In some of our experiments, we used a borescope to visually observe the decomposing PBX. Our observations included the endothermic β–δ phase change of the HMX, a small exothermic temperature excursion in low-density unconfined experiments, and runaway ignition. We hypothesize that the temperature excursion in these low density experiments was associated with the NP decomposing exothermically within the PBX sample. This reactant-limited temperature excursion was not observed with our thermocouples in the high-density experiments. For these experiments, we believe the binder diffused to the edges of our high density samples and decomposed next to the highly conductive wall as confirmed by our borescope images.
Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia's Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.
Blast waves from an explosion in air can cause significant structural damage. As an example, cylindrically-shaped charges have been used for over a century as dynamite sticks for mining, excavation, and demolition. Near the charge, the effects of geometry, standoff from the ground, the proximity to other objects, confinement (tamping), and location of the detonator can significantly affect blast wave characteristics. Furthermore, nonuniformity in the surface characteristics and the density of the charge can affect fireball and shockwave structure. Currently, the best method for predicting the shock structure near a charge and the dynamic loading on nearby structures is to use a multidimensional, multimaterial shock physics code. However, no single numerical technique currently exists for predicting secondary combustion, especially when particulates from the charge are propelled through the fireball and ahead of the leading shock lens. Furthermore, the air within the thin shocked layer can dissociate and ionize. Hence, an appropriate equation of state for air is needed in these extreme environments. As a step towards predicting this complex phenomenon, a technique was developed to provide the equilibrium species composition at every computational cell in an air blast simulation as an initial condition for hand-off to other analysis codes for combustion fluid dynamics or radiation transport. Here, a bare cylindrical charge of TNT detonated in air is simulated using CTH, an Eulerian, finite volume, shock propagation code developed and maintained at Sandia National Laboratories. The shock front propagation is computed at early times, including the detonation wave structure in the explosive and the subsequent air shock up to 100 microseconds, where ambient air entrainment is not significant. At each computational cell, which could have TNT detonation products, air, or both TNT and air, the equilibrium species concentration at the density-energy state is computed using the JCZS2i database in the thermochemical code TIGER. This extensive database of 1267 gas (including 189 ionized species) and 490 condensed species can predict thermodynamic states up to 20,000 K. The results of these calculations provide the detailed three-dimensional structure of a thin shock front, and spatial species concentrations including free radicals and ions. Furthermore, air shock predictions are compared with experimental pressure gage data from a right circular cylinder of pressed TNT, detonated at one end. These complimentary predictions show excellent agreement with the data for the primary wave structure.
Predicting the response of energetic materials during accidents, such as fire, is important for high consequence safety analysis. We hypothesize that responses of ener-getic materials before and after ignition depend on factors that cause thermal and chemi-cal damage. We have previously correlated violence from PETN to the extent of decom-position at ignition, determined as the time when the maximum Damkoehler number ex-ceeds a threshold value. We seek to understand if our method of violence correlation ap-plies universally to other explosive starting with RDX.