Vogel, J K.; Kozioziemski, B K.; Walton, C C.; Ayers, J A.; Bell, Perry M.; Bradley, David K.; Descalle, M-A D.; Hau-Riege, S H.; Fein, Jeffrey R.; Ampleford, David A.; Ball, Christopher R.; Gard, Paul D.; Jones, Michael J.; Maurer, A.; Wu, Ming W.; Champey, P C.; Davis, J D.; Griffith, C G.; Kolodziejczak, J K.; Ramsey, B R.; Sanchez, J S.; Speegle, C S.; Young, M Y.; Kilaru, K K.; Roberts, O R.; Ames, A A.; Bruni, R B.; Romaine, S R.; Sethares, L S.
Yates, Kevin C.; Hermmann, Hans H.; Meaney, Kevin M.; Springstead, Michael S.; Polk, Paul P.; Albright, Brian J.; Chandler, Gordon A.; LAKE, PAT L.; Ball, Chris B.; Jones, Michael J.; Spencer, Decker C.; Mckenney, John M.; Kaufman, Morris K.; Malone, Robert M.; Corcoran, James C.; McGillivray, Kevin M.
By varying current-loss circuit parameters, the Mach2-tabular collisional radiative equilibrium 2-D radiation magnetohydrodynamic model was tuned to reproduce the radiative and electrical properties of three recent argon gas-puff experiments (same initial conditions) performed on the Z machine at Sandia National Laboratories. The model indicates that there were current losses occurring near or within the diode region of the Z machine during the stagnation phase of the implosion. The 'good' simulation reproduces the experimental K-shell powers, K-shell yields, total powers, percentage of emission radiated in α lines, size of the K-shell emission region, and the average electron temperature near the time-of-peak K-shell power. The calculated atomic populations, ion temperatures, and radial velocities are used as input to a detailed multifrequency ray-trace radiation transport model that includes the Doppler effect. This model is employed to construct time-, space-, and energy-resolved synthetic spectra. The role the Doppler effect likely plays in the experiments is demonstrated by comparing synthetic spectra generated with and without this effect.