This work demonstrated both NbN and Nb make good electrodes for stabilizing orthorhombic phase of Hf0.6Zr0.4O2 ferroelectric films. Wake up are < 100 cycles. Pr can be as high as 30 µC/cm2 - respectively 14 and 18 µC/cm2 here. Further, capacitance suggests an orthorhombic phase can be stabilized. Addition of a linear dielectric under modest thickness can tune the Pr and reduce leakage.
Ferroelectric phase stability in hafnium oxide is reported to be influenced by factors that include composition, biaxial stress, crystallite size, and oxygen vacancies. In the present work, the ferroelectric performance of atomic layer deposited Hf0.5Zr0.5O2 (HZO) prepared between TaN electrodes that are processed under conditions to induce variable biaxial stresses is evaluated. The post-processing stress states of the HZO films reveal no dependence on the as-deposited stress of the adjacent TaN electrodes. All HZO films maintain tensile biaxial stress following processing, the magnitude of which is not observed to strongly influence the polarization response. Subsequent composition measurements of stress-varied TaN electrodes reveal changes in stoichiometry related to the different preparation conditions. HZO films in contact with Ta-rich TaN electrodes exhibit higher remanent polarizations and increased ferroelectric phase fractions compared to those in contact with N-rich TaN electrodes. HZO films in contact with Ta-rich TaN electrodes also have higher oxygen vacancy concentrations, indicating that a chemical interaction between the TaN and HZO layers ultimately impacts the ferroelectric orthorhombic phase stability and polarization performance. The results of this work demonstrate a necessity to carefully consider the role of electrode processing and chemistry on performance of ferroelectric hafnia films.
Fields, Shelby S.; Olson, David O.; Jaszwecki, Samantha T.; Fancher, Chris F.; smith, sean w.; Dickie, Diane U.; Esteves, Giovanni E.; Henry, Michael D.; Davids, Paul D.; Hopkins, Patrick E.; Ihlefeld, Jon F.
Rummel, Brian D.; Miroshnik, Leonid; Patriotis, Marios; Li, Andrew; Sinno, Talid R.; Henry, Michael D.; Balakrishnan, Ganesh; Han, Sang M.
Surface acoustic wave devices have been fabricated on a GaAs 100 substrate to demonstrate the capability of 2D Raman microscopy as an imaging technique for acoustic waves on the surface of a piezoelectric substrate. Surface acoustic waves are generated using a two-port interdigitated transducer platform, which is modified to produce surface standing waves. We have derived an analytical model to relate Raman peak broadening to the near-surface strain field of the GaAs surface produced by the surface acoustic waves. Atomic force microscopy is used to confirm the presence of a standing acoustic wave, resolving a total vertical displacement of 3 nm at the antinode of the standing wave. Stress calculations are performed for both imaging techniques and are in good agreement, demonstrating the potential of this Raman analysis.
Composition dependence of second harmonic generation, refractive index, extinction coefficient, and optical bandgap in 20 nm thick crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films is reported. The refractive index exhibits a general increase with increasing ZrO2 content with all values within the range of 1.98-2.14 from 880 nm to 400 nm wavelengths. A composition dependence of the indirect optical bandgap is observed, decreasing from 5.81 eV for HfO2 to 5.17 eV for Hf0.4Zr0.6O2. The bandgap increases for compositions with x > 0.6, reaching 5.31 eV for Hf0.1Zr0.9O2. Second harmonic signals are measured for 880 nm incident light. The magnitude of the second harmonic signal scales with the magnitude of the remanant polarization in the composition series. Film compositions that display near zero remanent polarizations exhibit minimal second harmonic generation while those with maximum remanent polarization also display the largest second harmonic signal. The results are discussed in the context of ferroelectric phase assemblage in the hafnium zirconium oxide films and demonstrate a path toward a silicon-compatible integrated nonlinear optical material.
In this study we examine a split-foundry multilevel application specific integrated circuit (ASIC) Si-interposer and die bonded using the direct bond interface (DBI) process, in addition to shortloop vehicles. The designs have been subject to relaxed pattern density rules, and exhibit chemical mechanical planarization (CMP) systematic process issues of varying degrees. We find that the interconnect formation is robust against moderate dielectric thickness variation, as well as a moderate degree of copper corrosion. We discuss and demonstrate various CMP methods which have a clear and repeatable impact. Pattern density effects and defectivity on the bond quality are examined using focused ion beam scanning electron microscope (FIB-SEM) images at the feature scale (sub 100 um) and intra-die scale (few mm). Impact to the CMP performance, including plug recess, and defectivity are discussed.
In a previous paper, we described a new abstract circuit model for reversible computation called asynchronous ballistic reversible computing (ABRC), in which localized information-bearing pulses propagate ballistically along signal paths between stateful abstract devices and elastically scatter off those devices serially, while updating the device state in a logically-reversible and deterministic fashion. The ABRC model has been shown to be capable of universal computation. In the research reported here, we begin exploring how the ABRC model might be realized in practice using single flux quantum solitons (fluxons) in superconducting Josephson junction (JJ) circuits. One natural family of realizations could utilize fluxon polarity to represent binary data in individual pulses propagating near-ballistically, along discrete or continuous long Josephson junctions or microstrip passive transmission lines, and utilize the flux charge (-1, 0, +1) of a JJ-containing superconducting loop with Φ0 < IcL < 2Φ0 to encode a ternary state variable internal to a device. A natural question then arises as to which of the definable abstract ABRC device functionalities using this data representation might be implementable using a JJ circuit that dissipates only a small fraction of the input fluxon energy. We discuss conservation rules and symmetries considered as constraints to be obeyed in these circuits, and begin the process of classifying the possible ABRC devices in this family having up to three bidirectional I/O terminals, and up to three internal states.
We report on the fabrication and characterization of Nb/Ta-N/Nb Josephson junctions grown by room temperature magnetron sputtering on 150-mm diameter Si wafers. Junction characteristics depend upon the Ta-N barrier composition, which was varied by adjusting the N2 flow during film deposition. Higher N2 flow rates raise the barrier resistance and increase the junction critical current. This work demonstrates the viability of Ta-N as an alternative barrier to aluminum oxide, with the potential for large scale integration.
We measure the frequency dependence of a niobium microstrip resonator as a function of temperature from 1.4 to 8.4 K. In a 2-micrometer-wide half-wave resonator, we find the frequency of resonance changes by a factor of 7 over this temperature range. From the resonant frequencies, we extract inductance per unit length, characteristic impedance, and propagation velocity (group velocity). We discuss how these results relate to superconducting electronics. Over the 2 K to 6 K temperature range where superconducting electronic circuits operate, inductance shows a 19% change and both impedance and propagation velocity show an 11% change.
In this study, the scaling of polarization and pyroelectric response across a thickness series (5–20 nm) of Hf0.58Zr0.42O2 films with TaN electrodes was characterized. Reduction in thickness from 20 nm to 5 nm resulted in a decreased remanent polarization from 17 to 2.8 μC cm-2. Accompanying the decreased remanent polarization was an increased absolute pyroelectric coefficient, from 30 to 58 μC m-2 K-1. The pyroelectric response of the 5 nm film was unstable and decreased logarithmically with time, while that of 10 nm and thicker films was stable over a time scale of >300 h at room temperature. Finally, the sign of the pyroelectric response was irreversible with differing polarity of poling bias for the 5 nm thick film, indicating that the enhanced pyroelectric response was of electret origins, whereas the pyroelectric response in thicker films was consistent with a crystallographic origin.
We report on the fabrication and characterization of nanocrystalline ZnO films for use as a random laser physical unclonable function (PUF). Correlation between processing conditions and film microstructure will be made to optimize the lasing properties and random response. We will specifically examine the repeatability and security of PUFs demonstrated in this novel 3 system. This demonstration has promise to impact many of Sandia's core missions including counterfeit detection. 4 4
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. This work describes 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Furthermore, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.
We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.
Recent literature has focused on improving piezoelectric coupling coefficients by alloying aluminum nitride (AlN) with scandium (Sc). Akiyama et al. showed the highest d-33 piezoelectric coefficient increase of >4x at a 41% Sc substitution for Al. Thus far, studies mainly focus on material measurements such as x-ray diffraction or piezoelectric constants to assess the material quality. Although these measurements are useful to assess the improvement in the piezoelectric performance of the material, they do not address improvements in the figure-of-merit (FOM) of resonators (i.e., coupling coefficient times quality factor). Resonator structures are needed to directly extract these key performance parameters for film assessment. Fabrication integration, however, must be minimized to avoid obscuring film performance by extrinsic device effects.
This work reports the utilization of a recently developed film, ScAlN, as a silicon etch mask offering significant improvements in high etch selectivity to silicon. Utilization of ScAlN as a fluorine chemistry based deep reactive ion etch mask demonstrated etch selectivity at 23 550:1, four times better than AlN, 11 times better than Al2O3, and 148 times better than silicon dioxide with significantly less resputtering at high bias voltage than either Al2O3 or AlN. Ellipsometry film thickness measurements show less than 0.3 nm/min mask erosion rates for ScAlN. Micromasking of resputtered Al for Al2O3, AlN, and ScAlN etch masks is also reported here, utilizing cross-sectional scanning electron microscope and confocal microscope roughness measurements. With lower etch bias, the reduced etch rate can be optimized to achieve a trench bottom surface roughness that is comparable to SiO2 etch masks. Etch mask selectivity enabled by ScAlN is likely to make significant improvements in microelectromechanical systems, wafer level packaging, and plasma dicing of silicon.
With the advent of the internet-of-things, sensors that are constantly alert yet consuming near-zero power are desired. Remote sensing applications where sensor replacement is costly or hazardous would also benefit. Piezoelectric micro-electro-mechanical systems (MEMS) convert mechanical or acoustic energy into electrical signals while consuming zero power. When coupled with low-power complementary metal-oxide-semiconductor (CMOS) circuits, a near-zero power sensing system is formed. This work describes piezoelectric MEMS microphones based on aluminum nitride (AlN). The microphones operate as passive acoustic filters by placing their resonant response within bandwidths of interest. Devices are demonstrated with operational frequencies from 430 Hz to greater than 10 kHz with quality factors as large as 3,000 and open-circuit voltages exceeding 600 mV/Pa.
Properties of NbN and TaxN thin films grown at ambient temperatures on SiO2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N2 gas flow were investigated. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N2 gas flow during growth. High crystalline quality, (111) oriented NbN films with Tc up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the TaxN films depended upon both the N2 partial pressure used during growth and the film thickness. The root mean square surface roughness of TaxN films grown by MS increased as the film thickness decreased down to 10 nm.
Vacuum gap λ/2 microwave resonators are demonstrated as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Creating low loss circuits in this geometry is also discussed.
Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.
This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.
A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.