Publications

Results 1–25 of 166
Skip to search filters

Quantum-Accurate Multiscale Modeling of Shock Hugoniots, Ramp Compression Paths, Structural and Magnetic Phase Transitions, and Transport Properties in Highly Compressed Metals

Wood, Mitchell A.; Nikolov, Svetoslav V.; Rohskopf, Andrew D.; Desjarlais, Michael P.; Cangi, Attila C.; Tranchida, Julien T.

Fully characterizing high energy density (HED) phenomena using pulsed power facilities (Z machine) and coherent light sources is possible only with complementary numerical modeling for design, diagnostic development, and data interpretation. The exercise of creating numerical tests, that match experimental conditions, builds critical insight that is crucial for the development of a strong fundamental understanding of the physics behind HED phenomena and for the design of next generation pulsed power facilities. The persistence of electron correlation in HED ma- terials arising from Coulomb interactions and the Pauli exclusion principle is one of the greatest challenges for accurate numerical modeling and has hitherto impeded our ability to model HED phenomena across multiple length and time scales at sufficient accuracy. An exemplar is a fer- romagnetic material like iron, while familiar and widely used, we lack a simulation capability to characterize the interplay of structure and magnetic effects that govern material strength, ki- netics of phase transitions and other transport properties. Herein we construct and demonstrate the Molecular-Spin Dynamics (MSD) simulation capability for iron from ambient to earth core conditions, all software advances are open source and presently available for broad usage. These methods are multi-scale in nature, direct comparisons between high fidelity density functional the- ory (DFT) and linear-scaling MSD simulations is done throughout this work, with advancements made to MSD allowing for electronic structure changes being reflected in classical dynamics. Main takeaways for the project include insight into the role of magnetic spins on mechanical properties and thermal conductivity, development of accurate interatomic potentials paired with spin Hamil- tonians, and characterization of the high pressure melt boundary that is of critical importance to planetary modeling efforts.

More Details

Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics

npj Computational Materials

Nikolov, Svetoslav V.; Wood, Mitchell A.; Cangi, Attila; Maillet, Jean B.; Marinica, Mihai C.; Thompson, Aidan P.; Desjarlais, Michael P.; Tranchida, Julien G.

A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.

More Details

Thermodynamics of the insulator-metal transition in dense liquid deuterium

Physical Review B

Desjarlais, Michael P.; Knudson, Marcus D.; Redmer, R.

Recent dynamic compression experiments [M. D. Knudson, Science 348, 1455 (2015)10.1126/science.aaa7471; P. M. Celliers, Science 361, 677 (2018)10.1126/science.aat0970] have observed the insulator-metal transition in dense liquid deuterium, but with an approximately 95-GPa difference in the quoted pressures for the transition at comparable estimated temperatures. It was claimed in the latter of these two papers that a very large latent heat effect on the temperature was overlooked in the first, requiring correction of those temperatures downward by a factor of 2, thereby putting both experiments on the same theoretical phase boundary and reconciling the pressure discrepancy. We have performed extensive path-integral molecular dynamics calculations with density functional theory to directly calculate the isentropic temperature drop due to latent heat in the insulator-metal transition for dense liquid deuterium and show that this large temperature drop is not consistent with the underlying thermodynamics.

More Details

Sound velocity, shear modulus, and shock melting of beryllium along the Hugoniot

Physical Review B

McCoy, C.A.; Knudson, Marcus D.; Desjarlais, Michael P.

Magnetically launched flyer plates were used to investigate the shock response of beryllium between 90 and 300 GPa. Solid aluminum flyer plates drove steady shocks into polycrystalline beryllium to constrain the Hugoniot from 90 to 190 GPa. Multilayered copper/aluminum flyer plates generated a shock followed by an overtaking rarefaction which was used to determine the sound velocity in both solid and liquid beryllium between 130 and 300 GPa. Disappearance of the longitudinal wave was used to identify the onset of melt along the Hugoniot and measurements were compared to density functional theory calculations to explore the proposed hcp-bcc transition at high pressure. The onset of melt along the Hugoniot was identified at ∼205GPa, which is in good agreement with theoretical predictions. These results show no clear indication of an hcp-bcc transition prior to melt along the beryllium Hugoniot. Rather, the shear stress, determined from the release wave profiles, was found to gradually decrease with stress and eventually vanish at the onset of melt.

More Details

Deuterium Hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory

Physical Review B

Clay III, Raymond C.; Desjarlais, Michael P.; Shulenburger, Luke N.

Outstanding problems in the high-pressure phase diagram of hydrogen have demonstrated the need for more accurate ab initio methods for thermodynamic sampling. One promising method that has been deployed extensively above 100 GPa is coupled electron-ion Monte Carlo (CEIMC), which treats the electronic structure with quantum Monte Carlo (QMC). However, CEIMC predictions of the deuterium principal Hugoniot disagree significantly with experiment, overshooting the experimentally determined peak compression density by 7% and lower temperature gas-gun data by well over 20%. By deriving an equation relating the predicted Hugoniot density to underlying equation of state errors, we show that QMC and many-body methods can easily spoil the error cancellation properties inherent in the Rankine-Hugoniot relation, and very likely suffer from error addition. By cross validating QMC based on systematically improvable trial functions against post-Hartree-Fock many-body methods, we find that these methods introduce errors of the right sign and magnitude to account for much of the observed discrepancy between CEIMC and experiment. We stress that this is not just a CEIMC problem, but that thermodynamic sampling based on other many-body methods is likely to experience similar difficulties.

More Details

Ion current losses in the convolute and inner magnetically insulated transmission line of the Z machine

Physical Review Accelerators and Beams

Waisman, Eduardo M.; Desjarlais, Michael P.; Cuneo, M.E.

We introduce a 1D planar static model to elucidate the underlying mechanism of large ion current losses in the vacuum convolute and the inner magnetically insulated transmission line (MITL) of the Z machine. We consider E × B electron flow, parallel to the electrodes, and ion motion across the vacuum gap, for given voltage V, gap distance d, anode magnetic field B a, and vacuum electron current Δ I. This model has been introduced and solved before by Desjarlais [Phys. Rev. Lett. 59, 2295 (1987)] for the applied magnetic field ion diode. Here we apply it to convolute and inner MITL ion losses of Z, relaxing the fix magnetic flux condition of that reference. In the absence of ions we show that the electron vacuum flow must be close to the anode if its current exceeds the value given by the local flow impedance, implying high electric fields there. We then introduce space charge limited ion emission from the anode, neglecting the magnetic force on ions. We obtain the solution of the steady state equations for two special cases: (a) when both the electric potential and the electric field are zero inside the gap, and there is a layer of electrons not carrying current that neutralizes the ion charge between the virtual and the electrode cathode, making that region electric field free, and (b) when the electric field is zero inside the gap, but the potential is not, and zero electron charge between that point and the physical cathode. For case (a) we obtain an ion current density which we conjecture is the maximum attainable for any electron charge distribution in the electron current carrying layer, given V, d, Ba, Δ I an ion species. We obtain the enhancement factor for both cases with respect to the ion-only Child-Langmuir ion current density, and show that it can be significantly larger than that of the electron saturated flow case. Furthermore, imposing electron current conservation as the flow enters the inner MITL from the four outer MITLs, we recover the well-known dependence jion ~ V3/2 / d2, where voltage and gap are taken near the joining point of those outer MITLs. The implications and limitations of the proposed model are discussed.

More Details
Results 1–25 of 166
Results 1–25 of 166