Publications

8 Results
Skip to search filters

WeaselBoard :

Mulder, John M.; Schwartz, Moses D.; Berg, Michael J.; Van Houten, Jonathan R.; Urrea, Jorge M.; Clements, Abraham A.; Depoy, Jennifer M.; Jacob, Joshua J.

Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-day exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.

More Details

What then do we do about computer security?

Berg, Michael J.; Davis, Christopher E.; Mayo, Jackson M.; Suppona, Roger A.; Wyss, Gregory D.

This report presents the answers that an informal and unfunded group at SNL provided for questions concerning computer security posed by Jim Gosler, Sandia Fellow (00002). The primary purpose of this report is to record our current answers; hopefully those answers will turn out to be answers indeed. The group was formed in November 2010. In November 2010 Jim Gosler, Sandia Fellow, asked several of us several pointed questions about computer security metrics. Never mind that some of the best minds in the field have been trying to crack this nut without success for decades. Jim asked Campbell to lead an informal and unfunded group to answer the questions. With time Jim invited several more Sandians to join in. We met a number of times both with Jim and without him. At Jim's direction we contacted a number of people outside Sandia who Jim thought could help. For example, we interacted with IBM's T.J. Watson Research Center and held a one-day, videoconference workshop with them on the questions.

More Details

Indirection and computer security

Berg, Michael J.

The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyze common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.

More Details

Interstitial Monitoring Technologies

Berg, Michael J.; Torgerson, Mark D.

When developing new hardware for a computer system, bus monitors are invaluable for testing compliance and troubleshooting problems. Bus monitors can be purchased for other common system busses such as the Peripheral Component Interconnect (PCI) bus and the Universal Serial Bus (USB). However, the project team did not find any commercial bus analyzers for the Low Pin Count (LPC) bus. This report will provide a short overview of the LPC interface. Page 3 of 11 This page intentionally left blank.Page 4 of 11

More Details

Distributed Denial-of-Service Characterization

Draelos, Timothy J.; Draelos, Timothy J.; Torgerson, Mark D.; Berg, Michael J.; Campbell, Philip L.; Duggan, David P.; Van Leeuwen, Brian P.; Young, William F.; Young, Mary L.

Distributed denial of service (DoS) attacks on cyber-resources are complex problems that are difficult to completely define, characterize, and mitigate. We recognize the process-nature of DoS attacks and view them from multiple perspectives. Identification of opportunities for mitigation and further research may result from this attempt to characterize the DoS problem space. We examine DoS attacks from the point of view of (1) a high-level that establishes common terminology and a framework for discussing the DoS process, (2) layers of the communication stack, from attack origination to the victim of the attack, (3) specific network and computer elements, and (4) attack manifestations. We also examine DoS issues associated with wireless communications. Using this collection of views, one begins to see the DoS problem in a holistic way that may lead to improved understanding, new mitigation strategies, and fruitful research.

More Details
8 Results
8 Results