Publications

10 Results
Skip to search filters

30 cm Drop Tests

Kalinina, Elena A.; Ammerman, Douglas J.; Grey, Carissa A.; Arviso, Michael A.; Wright, Catherine W.; Lujan, Lucas A.; Flores, Gregg J.; Saltzstein, Sylvia J.

The data from the multi-modal transportation test conducted in 2017 demonstrated that the inputs from the shock events during all transport modes (truck, rail, and ship) were amplified from the cask to the spent commercial nuclear fuel surrogate assemblies. These data do not support common assumption that the cask content experiences the same accelerations as the cask itself. This was one of the motivations for conducting 30 cm drop tests. The goal of the 30 cm drop test is to measure accelerations and strains on the surrogate spent nuclear fuel assembly and to determine whether the fuel rods can maintain their integrity inside a transportation cask when dropped from a height of 30 cm. The 30 cm drop is the remaining NRC normal conditions of transportation regulatory requirement (10 CFR 71.71) for which there are no data on the actual surrogate fuel. Because the full-scale cask and impact limiters were not available (and their cost was prohibitive), it was proposed to achieve this goal by conducting three separate tests. This report describes the first two tests — the 30 cm drop test of the 1/3 scale cask (conducted in December 2018) and the 30 cm drop of the full-scale dummy assembly (conducted in June 2019). The dummy assembly represents the mass of a real spent nuclear fuel assembly. The third test (to be conducted in the spring of 2020) will be the 30 cm drop of the full-scale surrogate assembly. The surrogate assembly represents a real full-scale assembly in physical, material, and mechanical characteristics, as well as in mass.

More Details

Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask

McConnell, Paul E.; Ross, Steven B.; Grey, Carissa A.; Uncapher, William L.; Arviso, Michael A.; Garmendia, Rafael Glez.; Fernandez Perez, Ismael F.; Palacio, Alejandro P.; Calleja, Guillermo C.; Garrido, David G.; Rodriguez Casas, Ana R.; Gonzalez Garcia, Luis G.; Chilton, Lyman W.; Ammerman, Douglas J.; Walz, Jacob W.; Gershon, Sabina G.; Saltzstein, Sylvia J.; Sorenson, Ken S.; Klymyshyn, Nicholas K.; Hanson, Brady D.; Pena, Ruben P.; Walker, Russell W.

This report describes tests conducted using a full-size rail cask, the ENSA ENUN 32P, involving handling of the cask and transport of the cask via truck, ships, and rail. The purpose of the tests was to measure strains and accelerations on surrogate pressurized water reactor fuel rods when the fuel assemblies were subjected to Normal Conditions of Transport within the rail cask. In addition, accelerations were measured on the transport platform, the cask cradle, the cask, and the basket within the cask holding the assemblies. These tests were an international collaboration that included Equipos Nucleares S.A., Sandia National Laboratories, Pacific Northwest National Laboratory, Coordinadora Internacional de Cargas S.A., the Transportation Technology Center, Inc., the Korea Radioactive Waste Agency, and the Korea Atomic Energy Research Institute. All test results in this report are PRELIMINARY – complete analyses of test data will be completed and reported in FY18. However, preliminarily: The strains were exceedingly low on the surrogate fuel rods during the rail-cask tests for all the transport and handling modes. The test results provide a compelling technical basis for the safe transport of spent fuel.

More Details

Design studies for the transmission simulator method of experimental dynamic substructuring

Arviso, Michael A.

In recent years, a successful method for generating experimental dynamic substructures has been developed using an instrumented fixture, the transmission simulator. The transmission simulator method solves many of the problems associated with experimental substructuring. These solutions effectively address: (1) rotation and moment estimation at connection points; (2) providing substructure Ritz vectors that adequately span the connection motion space; and (3) adequately addressing multiple and continuous attachment locations. However, the transmission simulator method may fail if the transmission simulator is poorly designed. Four areas of the design addressed here are: (1) designating response sensor locations; (2) designating force input locations; (3) physical design of the transmission simulator; and (4) modal test design. In addition to the transmission simulator design investigations, a review of the theory with an example problem is presented.

More Details
10 Results
10 Results