Publications

12 Results
Skip to search filters

Integrating Inter-Node Communication with a Resilient Asynchronous Many-Task Runtime System

Proceedings of ExaMPI 2020: Exascale MPI Workshop, Held in conjunction with SC 2020: The International Conference for High Performance Computing, Networking, Storage and Analysis

Paul, Sri R.; Hayashi, Akihiro; Whitlock, Matthew J.; Bak, Seonmyeong; Teranishi, Keita T.; Mayo, Jackson M.; Grossman, Max; Sarkar, Vivek

Achieving fault tolerance is one of the significant challenges of exascale computing due to projected increases in soft/transient failures. While past work on software-based resilience techniques typically focused on traditional bulk-synchronous parallel programming models, we believe that Asynchronous Many-Task (AMT) programming models are better suited to enabling resiliency since they provide explicit abstractions of data and tasks which contribute to increased asynchrony and latency tolerance. In this paper, we extend our past work on enabling application-level resilience in single node AMT programs by integrating the capability to perform asynchronous MPI communication, thereby enabling resiliency across multiple nodes. We also enable resilience against fail-stop errors where our runtime will manage all re-execution of tasks and communication without user intervention. Our results show that we are able to add communication operations to resilient programs with low overhead, by offloading communication to dedicated communication workers and also recover from fail-stop errors transparently, thereby enhancing productivity.

More Details

Enabling Resilience in Asynchronous Many-Task Programming Models

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Paul, Sri R.; Hayashi, Akihiro; Slattengren, Nicole S.; Kolla, Hemanth K.; Whitlock, Matthew J.; Bak, Seonmyeong; Teranishi, Keita T.; Mayo, Jackson M.; Sarkar, Vivek

Resilience is an imminent issue for next-generation platforms due to projected increases in soft/transient failures as part of the inherent trade-offs among performance, energy, and costs in system design. In this paper, we introduce a comprehensive approach to enabling application-level resilience in Asynchronous Many-Task (AMT) programming models with a focus on remedying Silent Data Corruption (SDC) that can often go undetected by the hardware and OS. Our approach makes it possible for the application programmer to declaratively express resilience attributes with minimal code changes, and to delegate the complexity of efficiently supporting resilience to our runtime system. We have created a prototype implementation of our approach as an extension to the Habanero C/C++ library (HClib), where different resilience techniques including task replay, task replication, algorithm-based fault tolerance (ABFT), and checkpointing are available. Our experimental results show that task replay incurs lower overhead than task replication when an appropriate error checking function is provided. Further, task replay matches the low overhead of ABFT. Our results also demonstrate the ability to combine different resilience schemes. To evaluate the effectiveness of our resilience mechanisms in the presence of errors, we injected synthetic errors at different error rates (1.0%, and 10.0%) and found modest increase in execution times. In summary, the results show that our approach supports efficient and scalable recovery, and that our approach can be used to influence the design of future AMT programming models and runtime systems that aim to integrate first-class support for user-level resilience.

More Details

Scalable collectives for distributed asynchronous many-task runtimes

Proceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018

Whitlock, Matthew J.; Kolla, Hemanth K.; Treichler, Sean; Pebay, Philippe; Bennett, Janine C.

Global collectives (reductions/aggregations) are ubiquitous and feature in nearly every application of distributed high-performance computing (HPC). While it is advisable to devise algorithms by placing collectives off the critical path of execution, they are sometimes unavoidable for correctness, numerical convergence and analyses purposes. Scalable algorithms for distributed collectives are well studied and have become an integral part of MPI, but new and emerging distributed computing frameworks and paradigms such as Asynchronous Many-Task (AMT) models lack the same sophistication for distributed collectives. Since the central promise of AMT runtimes is that they automatically discover, and expose, task dependencies in the underlying program and can schedule work optimally to minimize idle time and hide data movement, a naively designed collectives protocol can completely offset any gains made from asynchronous execution. In this study we demonstrate that scalable distributed collectives are indispensable for performance in AMT models. We design, implement and test the performance of a scalable collective algorithm in Legion, an exemplar data-centric AMT programming model. Our results show that AMT systems contain the necessary primitives that allow for fully scalable collectives without breaking the transparent data movement abstractions. Scalability tests of an integrated Legion 1D stencil mini-application show the clear benefit of implementing scalable collectives and the performance degradation when a naïve collectives alternative is used instead.

More Details

ASC CSSE Level 2 Milestone #6362: Resilient Asynchronous Many Task Programming Model

Teranishi, Keita T.; Kolla, Hemanth K.; Slattengren, Nicole S.; Whitlock, Matthew J.; Mayo, Jackson M.; Clay, Robert L.; Paul, Sri R.; Hayashi, Akihiro H.; Sarkar, Vivek S.

This report is an outcome of the ASC CSSE Level 2 Milestone 6362: Analysis of Re- silient Asynchronous Many-Task (AMT) Programming Model. It comprises a summary and in-depth analysis of resilience schemes adapted to the AMT programming model. Herein, performance trade-offs of a resilient-AMT prograrnming model are assessed through two ap- proaches: (1) an analytical model realized by discrete event simulations and (2) empirical evaluation of benchmark programs representing regular and irregular workloads of explicit partial differential equation solvers. As part of this effort, an AMT execution simulator and a prototype resilient-AMT programming framework have been developed. The former permits us to hypothesize the performance behavior of a resilient-AMT model, and has undergone a verification and validation (V&V) process. The latter allows empirical evaluation of the perfor- mance of resilience schemes under emulated program failures and enabled the aforementioned V&V process. The outcome indicates that (1) resilience techniques implemented within an AMT framework allow efficient and scalable recovery under frequent failures, that (2) the abstraction of task and data instances in the AMT programming model enables readily us- able Application Program Interfaces (APIs) for resilience, and that (3) this abstraction enables predicting the performance of resilient-AMT applications with a simple simulation infrastruc- ture. This outcome will provide guidance for the design of the AMT programming model and runtime systems, user-level resilience support, and application development for ASC's next generation platforms (NGPs).

More Details
12 Results
12 Results