Publications

6 Results
Skip to search filters

A minimax approach to sensor fusion for intrusion detection

SAS 2015 - 2015 IEEE Sensors Applications Symposium, Proceedings

Pugh, Matthew O.

The goal of sensor fusion is to combine the information obtained by various sensors to make better decisions. By better, it is meant that the sensor fusion algorithm provides, for example, better detectability or lower false alarm rates compared to decisions based upon a single sensor. This work is motivated by combining the data gathered by multiple passive infrared (PIR) sensors to detect intrusions into a room. Optimal decision theoretic approaches typically include statistical models for both the background (non-event) data, and intrusion (event) data. Concurrent work by the author has shown that by appropriately processing multiple PIR data streams, a statistic can be computed which has a known distribution on the background data. If the distribution of the statistic during an event is known, optimal decision procedures could be derived to perform sensor fusion. It is shown, however, that it is difficult to statistically model the event data. This paper thus focuses on using minimax theory to derive the worst-case event distribution for minimizing Bayes risk. Because of this, using the minimax distribution as a surrogate for the unknown true distribution of the event data provides a lower bound on risk performance. The minimax formulation is very general and will be used to consider loss functions, the probability of intrusions events and consider non-binary decisions.

More Details

Inherent secure communications using lattice based waveform design

Pugh, Matthew O.

The wireless communications channel is innately insecure due to the broadcast nature of the electromagnetic medium. Many techniques have been developed and implemented in order to combat insecurities and ensure the privacy of transmitted messages. Traditional methods include encrypting the data via cryptographic methods, hiding the data in the noise floor as in wideband communications, or nulling the signal in the spatial direction of the adversary using array processing techniques. This work analyzes the design of signaling constellations, i.e. modulation formats, to combat eavesdroppers from correctly decoding transmitted messages. It has been shown that in certain channel models the ability of an adversary to decode the transmitted messages can be degraded by a clever signaling constellation based on lattice theory. This work attempts to optimize certain lattice parameters in order to maximize the security of the data transmission. These techniques are of interest because they are orthogonal to, and can be used in conjunction with, traditional security techniques to create a more secure communication channel.

More Details
6 Results
6 Results