Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit C.; Korkali, Mert K.; Sun, Chih-Che S.; Donadee, Jonathan D.; Stewart, Emma M.; Donde, Vaibhav D.; Peppanen, Jouni P.; Hernandez, Miguel H.; Deboever, Jeremiah D.; Rocha, Celso R.; Rylander, Matthew R.; Siratarnsophon, Piyapath S.; Grijalva, Santiago G.; Talkington, Samuel T.; Mason, Karl M.; Vejdan, Sadegh V.; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya A.; Divan, Deepak D.; Li, Feng L.; Therrien, Francis T.; Jacques, Patrick J.; Rao, Vittal R.; Francis, Cody F.; Zaragoza, Nicholas Z.; Nordy, David N.; Glass, Jim G.; Holman, Derek H.; Mannon, Tim M.; Pinney, David P.
This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO), including some updates from the previous report SAND2022-0215, to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.
Reducing the duration and frequency of blackouts in remote communities poses an engineering challenge for grid operators. Outage effects can also be mitigated locally through microgrids. This paper develops a systematic procedure to account for these challenges by creating microgrids prioritizing high value assets within vulnerable communities. Nighttime satellite imagery is used to identify vulnerable communities. Using an asset classification and rating system, multi-asset clusters within these communities are prioritized. Infrastructure data, geographic information systems, satellite imagery, and spectral clustering are used to form and rank microgrid candidates. A microgrid sizing algorithm is included to guide through the microgrid design process. Finally, an application of the methodology is presented using real event, location, and asset data.
This guide is meant to assist communities – from residents to energy experts to decision makers – in developing a conceptual microgrid design that meets site-specific energy resilience goals. Using the framework described in this guidebook, stakeholders can come together and start to quantify site-specific vulnerabilities, identify the most significant risks to delivery of electricity, and establish electric outage tolerances across the community. In addition to establishing minimum service needs, this framework encourages communities to consider broader sustainability goals and policy constraints and begin to estimate up-front costs associated with the installation of alternative microgrid solutions. The framework guides a community through data collection and a high-level assessment of its needs, constraints, and priorities, prior to engaging engineers, vendors, and contractors. The first sections of this guidebook provide a high-level primer on electric systems. The latter sections include guidance for step-by-step data gathering and analysis of site conditions. The ultimate product resulting from the stepwise approach is a conceptual microgrid design. A conceptual design is defined as an initial design (10%-20% complete) that considers the specific threats, needs, limitations, and investment options for a given location. Going through this exercise and developing the conceptual microgrid design as a community ensures the same community members who will ultimately live with the solution are the developers of its foundational design. Often, these are also the very same people who understand system tolerances and needs the best and are therefore the ideal candidates for establishing these criteria. Especially when it comes to evaluating critical infrastructure, it is the community that best understands the most critical services. The framework is intended to facilitate a systematic approach to planning for resilience and provide a deeper understanding of how to use a framework to make decisions around microgrid solutions. Like many processes where tradeoffs need to be considered, this is often an iterative process. If this guide serves to help educate and empower communities who are beginning the process of deploying a microgrid, it has met the goal of its authors.
Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matthew S.; Azzolini, Joseph A.; Yusuf, Jubair Y.; Jones, Christian B.; Furlani Bastos, Alvaro F.; Chalamala, Rohit C.; Korkali, Mert K.; Sun, Chih-Che S.; Donadee, Jonathan D.; Stewart, Emma M.; Donde, Vaibhav D.; Peppanen, Jouni P.; Hernandez, Miguel H.; Deboever, Jeremiah D.; Rocha, Celso R.; Rylander, Matthew R.; Siratarnsophon, Piyapath S.; Grijalva, Santiago G.; Talkington, Samuel T.; Gomez-Peces, Cristian G.; Mason, Karl M.; Vejdan, Sadegh V.; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya A.; Divan, Deepak D.; Li, Feng L.; Therrien, Francis T.; Jacques, Patrick J.; Rao, Vittal S.; Francis, Cody F.; Zaragoza, Nicholas Z.; Nordy, David N.; Glass, Jim G.
This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.
Limited access to transmission lines after a major contingency event can inhibit restoration efforts. After Hurricane Maria, for example, flooding and landslides damaged roads and thus limited travel. Transmission lines are also often situated far from maintained roadways, further limiting the ability to access and repair them. Therefore, this paper proposes a methodology for assessing Puerto Rico’s infrastructure (i.e., roads and transmission lines) to identify potentially hard to reach areas due to natural risks or distance to roads. The approach uses geographic information system (GIS) data to define vulnerable areas, that may experience excessive restoration times. The methodology also uses graph theory analysis to find transmission lines with high centrality (or importance). Comparison of these important transmission lines with the vulnerability results found that many reside near roads that are at risk for landslides or floods.
Electric vehicles (EVs) represent an important socio-economic development opportunity for islands and remote locations because they can lead to reduced fuel imports, electricity storage, grid services, and environmental and health benefits. This paper presents an overview of opportunities, challenges, and examples of EVs in islands and remote power systems, and is meant to provide background to researchers, utilities, energy offices, and other stakeholders interested in the impacts of electrification of transportation. The impact of uncontrolled EV charging on the electric grid operation is discussed, as well as several mitigation strategies. Of particular importance in many islands and remote systems is taking advantage of local resources by combining renewable energy and EV charging. Policy and economic issues are presented, with emphasis on the need for an overarching energy policy to guide the strategies for EVs growth. The key conclusion of this paper is that an orderly transition to EVs, one that maximizes benefits while addressing the challenges, requires careful analysis and comprehensive planning.
This document is a summary of electric vehicle (EV) experiences in Hawaii. It is meant to be informative but does not present any new technical analysis except for the development of key lessons learned that could be applied in similar contexts. The electrification of transportation is essential for Hawaii's energy goal. An electrification of transportation strategy complements other energy policy goals, increases clean energy impacts, and provides customer value. By the end of 2020, there were over 12,000 EVs registered in Hawaii (about 1 percent of all cars). That number is expected to grow, based on the results from recent surveys and studies in Hawaii. Surveys pointed out the need for more charging stations, especially in places where people do business or park for long periods of the day. Participation in controlled charging programs should have attractive incentives since a majority of EV owners would not be willing to interrupt their EV charging for demand response. Various studies have confirmed the EV potential in Hawaii. For example, the JUMPSmart Maui demonstration project, a public-private partnership with Japan, helped to establish the EV charging station infrastructure in Maui and provided important information about charging behaviors. A critical backbone study commissioned by the utility recommended that 3,600 public chargers be installed by 2030 on the five islands, which confirms the need for infrastructure improvements expressed in earlier surveys. The process that emerged in Hawaii can be an example to other locations, which could heed the lessons from Hawaii's EV experiences: The importance of an overarching energy goal/objective based on a shared vision; planning and pilot projects; a strategic plan (roadmap) leveraging on initial experiences; evaluation of the effectiveness/success of actions; fine-tuning as needed; close regulatory oversight and stakeholder participation.
An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home-and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.
Broderick, Robert J.; Reno, Matthew J.; Lave, Matthew S.; Azzolini, Joseph A.; Blakely, Logan; Galtieri, Jason G.; Mather, Barry M.; Weekley, Andrew W.; Hunsberger, Randolph H.; Chamana, Manohar C.; Li, Qinmiao L.; Zhang, Wenqi Z.; Latif, Aadil L.; Zhu, Xiangqi Z.; Grijalva, Santiago G.; Zhang, Xiaochen Z.; Deboever, Jeremiah D.; Qureshi, Muhammad U.; Therrien, Francis T.; Lacroix, Jean-Sebastien L.; Li, Feng L.; Belletête, Marc B.; Hébert, Guillaume H.; Montenegro, Davis M.; Dugan, Roger D.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modeling and impact analysis. Unlike conventional scenario-based studies, quasi-static time-series (QSTS) simulations can realistically model time-dependent voltage controllers and the diversity of potential impacts that can occur at different times of year. However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1-second resolution is often required, which could take conventional computers a computational time of 10 to 120 hours when an actual unbalanced distribution feeder is modeled. This computational burden is a clear limitation to the adoption of QSTS simulations in interconnection studies and for determining optimal control solutions for utility operations. The solutions we developed include accurate and computationally efficient QSTS methods that could be implemented in existing open-source and commercial software used by utilities and the development of methods to create high-resolution proxy data sets. This project demonstrated multiple pathways for speeding up the QSTS computation using new and innovative methods for advanced time-series analysis, faster power flow solvers, parallel processing of power flow solutions and circuit reduction. The target performance level for this project was achieved with year-long high-resolution time series solutions run in less than 5 minutes within an acceptable error.
This paper describes a co-simulation environment used to investigate how high penetrations of electric vehicles (EV s) impact a distribution feeder during a resilience event. As EV adoption and EV supply equipment (EVSE) technology advance, possible impacts to the electric grid increase. Additionally, as weather related resilience events become more common, the need to understand possible challenges associated with EV charging during such events becomes more important. Software designed to simulate vehicle travel patterns, EV charging characteristics, and the associated electric demand can be integrated with power system software using co-simulation to provide more realistic results. The work in progress described here will simulate varying EV loading and location over time to provide insights about EVSE characteristics for maximum benefit and allow for general sizing of possible micro grids to supply EVs and critical loads.
An overall capacity assessment and an analysis of the system's X/R ratios for six actual distribution feeders was conducted to characterize the voltage response to various levels of distributed Electric Vehicle Supply Equipment (EVSE). The evaluation identified the capacity of the system at which a voltage violation occurred. This included a review of the uncontrolled and controlled cases to quantify the value of injecting reactive power as the grid voltage decreases. The evaluation found that the implementation of a Volt-Var curve with a global voltage reference provided a notable increase in capacity. A local reference voltage, measured at the point of common coupling, did not increase the capacity of every feeder in the experiment. The review of the X/R line properties using a Principal Component Analysis (PCA) identified groups within the six feeders that corresponded with each system's voltage response rate. This suggests the X/R ratios provide a direct prediction of the feeder's ability to avoid voltage violations while charging EVs.
Accurate distribution secondary low-voltage circuit models are needed to enhance overall distribution system operations and planning, including effective monitoring and coordination of distributed energy resources located in the secondary circuits. We present a full-scale demonstration across three real feeders of a computationally efficient approach for estimating the secondary circuit topologies and parameters using historical voltage and power measurements provided by smart meters. The method is validated against several secondary configurations, and compares favorably to satellite imagery and the utility secondary model. Feeder-wide results show how much parameters can vary from simple assumptions. Model sensitivities are tested, demonstrating only modest amounts of data and resolutions of data measurements are needed for accurate parameter and topology results.
The method for creating synthetic high-frequency sola simulations with unique profiles for each interconnection point on a distribution system feeder using low-frequency input data ispresented, including recent improvements which have made it more accurate at matching measuredirradiance statistics. These synthetic cloud fields can them be implemented into distribution grid simulations to model irradiance profiles for locations around the feeder. Without unique PV inputs at each interconnection point the number of voltage regulator tap change operations is significantly overestimated. In the final paper, we will present several implementations ofthe cloud fields into distribution grid simulations, showing the impact of using cloud fields in various scenarios such as different amounts of solar variability, different PV penetrations, and different clustering of PV installations.
This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorld 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.
A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced one year of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the twelve-month period ranging from 17% to 132%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism Solar. The most dramatic increase in performance was seen among the vertically mounted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules in the same orientation. Because peak energy generation (mid- morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).
This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.
High-frequency solar variability is an important to grid integration studies, but ground measurements are scarce. The high resolution irradiance algorithm (HRIA) has the ability to produce 4-sceond resolution global horizontal irradiance (GHI) samples, at locations across North America. However, the HRIA has not been extensively validated. In this work, we evaluate the HRIA against a database of 10 high-frequency ground-based measurements of irradiance. The evaluation focuses on variability-based metrics. This results in a greater understanding of the errors in the HRIA as well as suggestions for improvement to the HRIA.
As PV and wind power penetrations in utility balancing areas increase, it is important to understand how they will impact net load. We investigate daily and seasonal trends in solar power generation, wind power generation, and net load. Quantitative metrics are used to compare scenarios with no PV or wind, PV plus wind, only PV, or only wind. PV plus wind scenarios are found to have a larger reduction in maximum net load and smaller ranges between maximum and minimum load than PV only or wind only scenarios, showing that PV plus wind can be a beneficial combination.
Short circuit current (Isc) depends on the effective irradiance incident upon a PV module. Effective irradiance is highly correlated with broadband irradiance, but can vary slightly as the spectral content of the incident light changes. We explore using a few spectral wavelengths with broadband irradiance to predict Isc for ten modules of varying technologies (silicon, CIGS, CdTe). The goal is to identify a few spectral wavelengths that could be easily (and economically) measured to improve PV performance modeling.
Accurately representing the local solar variability at distribution timescales (30-seconds and shorter) is essential to modeling the impact of solar photovoltaics (PV) on distribution feeders. Previous works have examined variability at single locations, but this may not be useful to an operator whose distribution feeder is in a different climate region. In this work, we compare high-frequency variability from 8 locations in the United States. We define a variability metric for quantifying variability and use this metric to quantify and compare the variability at each of the 8 locations. We also explore the relationship between high-frequency and low-frequency (hourly) variability to see if widely-available low-frequency data (e.g., satellite data) may be used to determine variability climate zones. The end goal is to provide high-frequency solar inputs with climatologically representative solar variability for use in distribution studies.
To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. The low cost and ease of use of the SVD will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.
A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).
Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.
This report contains the written footprint of a Sandia-hosted workshop held in Albuquerque, New Mexico, June 22-23, 2016 on “Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation and Uncertainty Quantification,” as well as of pre-work that fed into the workshop. The workshop’s intent was to explore and begin articulating research opportunities at the intersection between two important Sandia communities: the complex systems (CS) modeling community, and the verification, validation and uncertainty quantification (VVUQ) community The overarching research opportunity (and challenge) that we ultimately hope to address is: how can we quantify the credibility of knowledge gained from complex systems models, knowledge that is often incomplete and interim, but will nonetheless be used, sometimes in real-time, by decision makers?
The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.
In this project, an integrated solution to measuring and collecting solar variability data called the solar variability datalogger (SVD) was developed, tested, and the value of its data to distribution grid integration studies was demonstrated. This work addressed the problem that high-frequency solar variability is rarely measured – due to the high cost and complex installation of existing solar irradiance measuring pyranometers – but is critical to the accurate determination of the impact of photovoltaics to electric grid operation. For example, up to a 300% difference in distribution grid voltage regulator tap change operations (a measure of the impact of PV) [1] has been observed due solely to different solar variability profiles.
To address the lack of knowledge of local solar variability, we have developed, deployed, and demonstrated the value of data collected from a low-cost solar variability sensor. While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we list variability sensor requirements, describe testing of various low-cost sensor components, present a validation of an alpha prototype, and show how the variability sensor collected data can be used for grid integration studies. The variability sensor will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic installations and thus will encourage greater penetrations of solar energy.
Since solar PV power generation is growing rapidly, it is important to accurately model solar power production in renewable generation integration studies which look at the impact of variable renewable generation on electric grid operations. However, solar irradiance or power measurements are often sparse both spatially and temporally, making it difficult to simulate PV power output. Here, we describe the technique used to simulate generation from up to 40 utility-scale PV plants and 9 areas of distributed PV in the state of New Mexico given only five hourly irradiance measurements plus a sixth irradiance measurement at 1-minute resolution that was used as a lookup library. Spatial smoothing based on the plant size was applied, then this area-average irradiance was converted to PV power output using irradiance to power models. In this way, PV power output profiles for each location, and for the aggregate of all locations, were produced and supplied to the integration study. Also for use in the study, day-ahead solar power output forecasts were created by adding errors representative of the current state of solar forecasting to the actual power output values.
Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.
Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.
We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. When only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.
Accurately representing the local solar variability at timescales relevant to distribution grid operations (30-s and shorter) is essential to modeling the impact of solar photovoltaics (PV) on distribution feeders. Due to a lack of available high-frequency solar data, some distribution grid studies have used synthetically-created PV variability or measured PV variability from a different location than their study location. In this work, we show the importance of using accurate solar PV variability inputs in distribution studies. Using high-frequency solar irradiance data from 10 locations in the United States, we compare the ramp rate distributions at the different locations, use a quantitative metric to describe the solar variability at each location, and run distribution simulations using representative 1-week samples from each location to demonstrate the impact of locational solar variability on the number of voltage regulator tap change operations. Results show more than a factor of 3 difference in the number of tap change operations between different PV power variability samples based on irradiance from the different locations. Errors in simulated number of tap changes of up to -70% were found when using low-frequency (e.g., 15-min) solar variability.
This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.