Publications

8 Results
Skip to search filters

SPARR: Spiking/Processing Array for Wide Dynamic Range and High Resolution Photonic Sensing

Hays, Park H.; Kagie, Matthew J.; Karelitz, David B.; Kay, Randolph ".; Mincey, John S.; Woods, Mark C.

The Spiking/Processing Array (spARR) is a novel photonic focal plane that uses pixels which generate electronic spikes autonomously and without a clock. These spikes feed into a network of digital asynchronous processing elements or DAPES. By building a useful assemblage of DAPES, and connecting them together in the correct way, sophisticated signal processing can be accomplished within the focal plane. Autonomous self-resetting pixels (AsP) enable SPARR to generate electronic response with very small signals--as little as a single photon in the case of Geiger mode avalanche photodiodes to as few as several hundred photons for in-cmos photodetectors. These spiking pixels enable fast detector response, but do not draw as much continuous power as synchronous clocked designs. The spikes emitted by the pixels all have the same magnitude, the information from the scene is effectively encoded into the rate of spikes and the time at which the spike is emitted. The spiking pixels, having converted incident light into electronic spikes, supply the spikes to a network of digital asynchronous processors. These are small state machines which respond to the spikes arriving at their input ports by either remaining unchanged or updating their internal state and possibly emitting a spike on one or more output ports. We show a design that accomplishes the sophisticated signal processing of a Haar spatial wavelet transform with spatial-spectral whitening. We furthermore show how this design results in a data streams which support imaging and transient optical source detection. Two simulators support this analysis: SPICE and sparrow. The CMOS SPICE simulator Cadence provides accurate CMOs design with accounting for effects of circuit parasitics throughout layout, accurate timing, and accurate energy consumption estimates. To more rapidly assess larger networks with more pixels, sparrow is a custom discrete event simulator that supports the non-homogeneous Poisson processes that lie behind photoelectric interaction. Sparrow is a photon-exact simulator that nevertheless performs SPARR system simulator for large-scale systems.

More Details

A resurgence in neuromorphic architectures enabling remote sensing computation

Proceedings - 2019 IEEE Space Computing Conference, SCC 2019

Vineyard, Craig M.; Severa, William M.; Kagie, Matthew J.; Scholand, Andrew J.; Hays, Park H.

Technological advances have enabled exponential growth in both sensor data collection, as well as computational processing. However, as a limiting factor, the transmission bandwidth in between a space-based sensor and a ground station processing center has not seen the same growth. A resolution to this bandwidth limitation is to move the processing to the sensor, but doing so faces size, weight, and power operational constraints. Different physical constraints on processor manufacturing are spurring a resurgence in neuromorphic approaches amenable to the space-based operational environment. Here we describe historical trends in computer architecture and the implications for neuromorphic computing, as well as give an overview of how remote sensing applications may be impacted by this emerging direction for computing.

More Details

Expectation-maximization algorithm for amplitude estimation of saturated optical transient signals

Journal of the Optical Society of America A: Optics and Image Science, and Vision

Kagie, Matthew J.; Lanterman, Aaron D.

This paper addresses parameter estimation for an optical transient signal when the received data has been right-censored. We develop an expectation-maximization (EM) algorithm to estimate the amplitude of a Poisson intensity with a known shape in the presence of additive background counts, where the measurements are subject to saturation effects. We compare the results of our algorithm with those of an EM algorithm that is unaware of the censoring.

More Details
8 Results
8 Results