The addition of active, nonlinear, and nonreciprocal functionalities to passive piezoelectric acoustic wave technologies could enable all-acoustic and therefore ultra-compact radiofrequency signal processors. Toward this goal, we present a heterogeneously integrated acoustoelectric material platform consisting of a 50 nm indium gallium arsenide epitaxial semiconductor film in direct contact with a 41° YX lithium niobate piezoelectric substrate. We then demonstrate three of the main components of an all-acoustic radiofrequency signal processor: passive delay line filters, amplifiers, and circulators. Heterogeneous integration allows for simultaneous, independent optimization of the piezoelectric-acoustic and electronic properties, leading to the highest performing surface acoustic wave amplifiers ever developed in terms of gain per unit length and DC power dissipation, as well as the first-ever demonstrated acoustoelectric circulator with an isolation of 46 dB with a pulsed DC bias. Finally, we describe how the remaining components of an all-acoustic radiofrequency signal processor are an extension of this work.
This work presents a 3-Port acoustoelectric switch design for surface acoustic wave signal processing. Using a multistrip coupler, the input acoustic wave at Port 1 is split into two parallel and electrically cross-linked acoustoelectric delay lines where an applied voltage can alter the gain and attenuation in each delay line based on the voltage polarity. The switch is demonstrated using a 270 MHz Leaky SAW mode on an InGaAs on 41° Y-cut lithium niobate heterostructure. Applying a +40 V voltage pulse results in an IL of -12.5 dB and -57.5 dB in the gain and isolation switch paths, respectively. This leads to a 45 dB difference in signal strength at the output ports.
We present the design, fabrication, and initial characterization of a CMOS compatible, ultra-high bandwidth, bulk-micro machined, optomechanical accelerometer. Displacement detection is achieved via a SiN integrated photonics Mach-Zehnder interferometer (MZI) fabricated on the surface of the device that is optomechanically coupled to acceleration-induced deformation of the accelerometer's proof mass tethers. The device is designed to measure vibrations at microsecond timescales with high dynamic range for the characterization of shock dynamics.
Radio frequency (RF) devices are becoming more multi-band, increasing the number of filters and other front-end components while simultaneously pushing towards reduced cost, size, weight, and power (CSWaP). One approach to reducing CSWaP is to augment the achievable functionalities of electromechanical/acoustic filtering chips to include "active" and nonlinear functionalities, such as gain and mixing. The acoustoelectric (AE) effect could enable such active acoustic wave devices. We have examined the AE effect with a leaky surface acoustic wave (LSAW) in a monolithic structure of epitaxial indium gallium arsenide (In GaAs) on lithium niobate (LiNb0 3 ). This lead to experimentally demonstrated state-of-the-art SAW amplifier performance in terms of gain per acoustic wavelength, reduced power consumption, and increased power efficiency. We quantitatively compare the amplifier performance to previous notable works and discuss the outlook of active acoustic wave components using this material platform. Ultimately, this could lead to smaller, higher-performance RF signal processors for communications applications.
We demonstrate a platform for phase and amplitude modulation in silicon nitride photonic integrated circuits via piezo-optomechanical coupling using tightly mechanically coupled aluminum nitride actuators. The platform, fabricated in a CMOS foundry, enables scalable active photonic integrated circuits for visible wavelengths, and the piezoelectric actuation functions without performance degradation down to cryogenic temperatures. As an example of the potential of the platform, we demonstrate a compact (∼40 µm diameter) silicon nitride ring resonator modulator operating at 780 nm with intrinsic quality factors in excess of 1.5 million, >10 dB change in extinction ratio with 2 V applied, a switching time less than 4 ns, and a switching energy of 0.5 pJ/bit. We characterize the exemplary device at room temperature and 7 K. At 7 K, the device obtains a resistance of approximately 20 teraohms, allowing it to operate with sub-picowatt electrical power dissipation. We further demonstrate a Mach-Zehnder modulator constructed in the same platform with piezoelectrically tunable phase shifting arms, with 750 ns switching time constant and 20 nW steady-state power dissipation at room temperature.
Active surface acoustic wave components have the potential to transform RF front ends by consolidating functionalities that currently occur across multiple chip technologies, leading to reduced insertion loss from converting back and forth between acoustic and electronic domains in addition to improved size and power efficiency. This letter demonstrates a significant advance in these active devices with a compact, high-gain, and low-power leaky surface acoustic wave amplifier based on the acoustoelectric effect. Devices use an acoustically thin semi-insulating InGaAs surface film on a YX lithium niobate substrate to achieve exceptionally high acoustoelectric interaction strength via an epitaxial In0.53Ga0.47As(P)/InP quaternary layer structure and wafer-scale bonding. We demonstrate 1.9 dB of gain per acoustic wavelength and power consumption of 90 mW for 30 dB of electronic gain. Despite the strong intrinsic leaky propagation loss, 5 dB of terminal gain is obtained for a semiconductor that is only 338 μm long due to state-of-the-art heterogenous integration and an improved material platform.
This paper demonstrates a monolithic surface acoustic wave amplifier fabricated by state-of-the-art heterogenous integration of a IH-V InGaAs-based epitaxial material stack and LiNb03. Due to the superior properties of the materials employed, we observe electron gain and also non-reciprocal gain in excess of 30dB with reduced power consumption. Additionally, we present a framework for performance optimization as a function of material parameters for a targeted gain. This platform enables further advances in active and non-reciprocal piezoelectric acoustic devices.
We explore fabrication-process dependencies on optical losses of AlN films and demonstrate Second Harmonic Generation through modal phase-matching in integrated AlN waveguides. A loss-dependent conversion efficiency model is developed to better design waveguides in lossy AlN media.
This paper describes the theoretical and experimental investigation of interdigitated transducers capable of producing focused acoustical beams in thin film piezoelectric materials. A mathematical formalism describing focused acoustical beams, lamb beams, is presented and related to their optical counterparts in two- and three-dimensions. A novel Fourier domain transducer design methodology is developed and utilized to produce near diffraction limited focused beams within a thin film AlN membrane. The properties of the acoustic beam formed by the transducer were studied by means of Doppler vibrometry implemented with a scanning confocal balanced homodyne interferometer. The Fourier domain modal analysis confirmed that 83% of the acoustical power was delivered to the targeted focused beam which was constituted from the lowest order symmetric mode, while 1% was delivered unintentionally to the beam formed from the anti-symmetric mode, and the remaining power was isotropically scattered. The transmission properties of the acoustic beams as they interact with devices with wavelength scale features were also studied, demonstrating minimal insertion loss for devices in which a subwavelength and pinhole apertures were included. [2018-0059]
Biasing a MEMS switch close to static-pull in reduces the modulation amplitude necessary to achieve resonant pull-in, but results in a highly nonlinear system. In this work, we present a new methodology that captures the essential dynamics and provides a prescription for achieving the optimal drive waveform which reduces the amplitude requirements of the modulation source. These findings are validated both experimentally and through numerical modeling.
We propose and theoretically analyze a new cavity optomechanical oscillator gyroscope. Mechanical frequency acts as a sensitive readout of rotation through the optomechanical spring and Sagnac effects. Remarkably, reducing device size improves scale factor.
The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO3 ). Section 1 provides an introduction to integrated LiNbO3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbO3 structures fabricated from LiNbO3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.
Dispersion engineering enables phase matching for nonlinear down conversion from 775nm to the telecom c-band in lithium niobite microdisk resonators without periodic poling. High rates of spontaneous creation of entangled photon pairs is observed.
We demonstrate doubly resonant second harmonic generation from 1550 to 775 nm in microdisks fabricated from lithium niobate on insulator wafers. We use a novel phase matching technique to achieve a conversion efficiency of 0.167%/mW.
After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.