Publications

Results 1–50 of 85
Skip to search filters

Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System

Journal of Energy Resources Technology, Transactions of the ASME

Carlson, Matthew D.; Alvarez, Francisco

A new generation of concentrating solar power (CSP) technologies is under development to provide dispatchable renewable power generation and reduce the levelized cost of electricity (LCOE) to 6 cents/kWh by leveraging heat transfer fluids (HTFs) capable of operation at higher temperatures and coupling with higher efficiency power conversion cycles. The U.S. Department of Energy (DOE) has funded three pathways for Generation 3 CSP (Gen3CSP) technology development to leverage solid, liquid, and gaseous HTFs to transfer heat to a supercritical carbon dioxide (sCO2) Brayton cycle. This paper presents the design and off-design capabilities of a 1 MWth sCO2 test system that can provide sCO2 coolant to the primary heat exchangers (PHX) coupling the high-Temperature HTFs to the sCO2 working fluid of the power cycle. This system will demonstrate design, performance, lifetime, and operability at a scale relevant to commercial CSP. A dense-phase high-pressure canned motor pump is used to supply up to 5.3 kg/s of sCO2 flow to the primary heat exchanger at pressures up to 250 bar and temperatures up to 715 °C with ambient air as the ultimate heat sink. Key component requirements for this system are presented in this paper.

More Details

Overview and design basis for the gen 3 particle pilot plant (G3P3)

AIP Conference Proceedings

Ho, Clifford K.; Albrecht, Kevin J.; Yue, Lindsey; Mills, Brantley M.; Sment, Jeremy; Christian, Joshua M.; Carlson, Matthew D.

This paper provides an overview of a next-generation particle-based concentrating solar power (CSP) system. The Gen 3 Particle Pilot Plant (G3P3) will heat particles to over 700 °C for use in high-temperature air or supercritical CO2 Brayton cycles with 6 hours of storage. The particles, which are inert, non-corrosive, durable, and inexpensive, are used as both the heat-transfer and storage media. Details of the operation, requirements, and design basis for the G3P3 system are presented, including a description of expected operational states and major components. Operational states include start-up, transients, steady-state operation, off-design conditions, and idling. The key components include the particle receiver, storage bins, heat exchanger, lift, and tower structure subsystems. Design bases and innovative features of each component are presented that will aid in achieving the desired cost and performance metrics.

More Details

Operational modes of a 2.0 MWth chloride molten-salt pilot-scale system

AIP Conference Proceedings

Armijo, Kenneth M.; Carlson, Matthew D.; Dorsey, Dwight S.; Ortega, J.; Madden, Dimitri A.; Christian, Joshua M.; Turchi, Craig S.

The limit of traditional solar-salt thermal stability is around 600 °C with ambient air as the cover gas. Nitrate molten salt concentrating solar power (CSP) systems are currently deployed globally and are considered to be state-of the art heat transfer fluids (HTFs) for present day high-temperature operation. However, decomposition challenges occur with these salts for operation beyond 600. Although slightly higher limits may be possible with solar salt, to fully realize SunShot efficiency goals of $15/kWhth HTFs and an LCOE of 6¢/kWh, molten-salt technologies working at higher temperatures (e.g., 650 °C to 750 °C) will require an alternative salt chemistry composition, such as chlorides. In this investigation a 2.0MWth Pilot-scale CSP plant design is developed to assess thermodynamic performance potential for operation up to 720 . Here, an Engineering Equation Solver (EES) model is developed with respect to 14 state-points from the base of a solar tower at the Sandia National Laboratories, National Solar Thermal Test Facility (NSTTF), to solar receiver mounted 120 ft. above the ground. The system design considers a ternary chloride ternary chloride (20%NaCl/40%MgCl/40%KCl by mol%) salt as the HTF, with 6 hrs. of storage and a 1 MWth primary salt to sCO2 heat exchanger. Preliminary system modelling results indicate a minimum non-dimensional Cv of 60 required for both cold and hot-side throttle recirculation valves for the operational pump operating between speeds of 1800 and 2400 RPM. Further receiver comparison study results suggest that the ternary salt requires an average 15.2% higher receiver flux with a slightly lower calculated receiver efficiency when compared to a binary carnelite salt to achieve a 2.0 MWth desired input power design.

More Details

High-Temperature Particle Heat Exchanger for sCO2 Power Cycles [Award 30342]

Carlson, Matthew D.; Albrecht, Kevin J.; Ho, Clifford K.; Laubscher, Hendrik F.; Alvarez, Francisco

This report describes the design, development, and testing of a prototype 100 kWt particle-to-supercritical CO2 (sCO2) heat exchanger. An analytic hierarchy process was implemented to compare and evaluate alternative heat-exchanger designs (fluidized bed, shell-and-plate moving packed bed, and shell-and-tube moving packed bed) that could meet the high pressure (≥ 20 MPa) and high temperature (≥ 700 °C) operational requirements associated with sCO2 power cycles. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. A 100 kWt shell-and-plate design was selected for construction and integration with Sandia’s falling particle receiver system that heats the particles using concentrated sunlight. Sandia worked with industry to design and construct the moving packed-bed shell-and-plate heat exchanger. Tests were performed to evaluate its performance using both electrical heating and concentrated sunlight to heat the particles. Overall heat transfer coefficients at off-design conditions (reduced operating temperatures and only three stainless steel banks in the counter-crossflow heat exchanger) were measured to be approximately ~25 - 70 W/m2-K, significantly lower than simulated values of >100 W/m2-K. Tests using the falling particle receiver to heat the particles with concentrated sunlight yielded overall heat transfer coefficients of ~35 – 80 W/m2-K with four banks (including a nickel-alloy bank above the three stainless steel banks). The overall heat transfer coefficient was observed to decrease with increasing particle inlet temperatures, which contrasted the results of simulations that showed an increase in heat transfer coefficient with temperature due to increased effective particle-bed thermal conductivity from radiation. The likely cause of the discrepancy was particle-flow maldistributions and funnel flow within the heat exchanger caused by internal ledges and cross-bracing, which could have been exacerbated by increased particle-wall friction at higher temperatures. Additional heat loss at higher temperatures may also contribute to a lower overall heat-transfer coefficient. Design challenges including pressure drop, particle and sCO2 flow maldistribution, and reduced heat transfer coefficient are discussed with approaches for mitigation in future designs. Lessons learned regarding instrumentation, performance characterization, and operation of particle components and sCO2 flow loops are also discussed. Finally, a 200 MWt commercial-scale shell-and-plate heat-exchanger design based on the concepts investigated in this report is proposed.

More Details

Design of a 1 mwth supercritical carbon dioxide primary heat exchanger test system

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Carlson, Matthew D.; Alvarez, Francisco

Concentrating Solar Power (CSP) plants have the potential to provide dispatchable renewable power generation to support the baseload need currently supplied primarily by coal and nuclear plants and peaking power capability to reduce the use of natural gas for load following. However, these plants have had difficulty achieving widespread use due to the low cost of combined photovoltaic and battery systems capable of providing similar services to the electricity grid. A new generation of CSP technologies must be developed to reduce the levelized cost of electricity (LCOE) to 6 cents/kWh by leveraging heat transfer fluids (HTF) capable of operation at higher temperatures and coupling with higher efficiency power conversion cycles. Three promising pathways for Generation 3 CSP (Gen3CSP) technology development have been funded by the U.S. Department of Energy (DOE) leveraging solid, liquid, and gaseous HTFs to transfer heat to a supercritical carbon dioxide (sCO2) Brayton cycle. The primary heat exchangers (PHX) necessary to couple these high-temperature HTFs to sCO2 are an essential new technology that must be demonstrated at a scale relevant to commercial CSP to validate design expectations for performance, lifetime, and operability. The demonstration of these PHXs need a reliable 1 MWth-scale sCO2 test system that can provide sCO2 coolant to the PHX in a compact package suitable for installation near any Gen3CSP thermal storage system. This paper outlines the final design of such a system including the expected operating range and off-design capabilities. The system uses a dense-phase high pressure canned motor pump as the sCO2 circulator and ambient air as the ultimate heat sink operating at pressures up to 250 bar and temperatures up to 715 °C with capability to supply up to 5.3 kg/s of sCO2 flow to the primary heat exchanger. Key component requirements for this system have been frozen and procurement is underway. The expected completion date for heated acceptance testing of this system is September of 2020. This system is also capable of being upgraded through the addition of a turbo-compressor and turbo-generator to operate as a complete sCO2 Brayton cycle with power generation in order to demonstrate an integrated solar to sCO2 power pilot plant and understand transient interactions between the thermal storage system, sCO2 turbomachinery, and ambient air temperature. In addition, this upgrade would provide experience with plant operating considerations including balancing charging the thermal storage system with generating and dispatching power to the electrical grid. A roadmap for this upgrade will be discussed including limitations and requirements for the necessary turbomachinery.

More Details

Compact heat exchanger semi-circular header burst pressure and strain validation

Proceedings of the ASME Turbo Expo

Lance, Blake W.; Carlson, Matthew D.

Compact heat exchangers for supercritical CO2 (sCO2) service are often designed with external, semi-circular headers. Their design is governed by the ASME Boiler & Pressure Vessel Code (BPVC) whose equations were typically derived by following Castigliano’s Theorems. However, there are no known validation experiments to support their claims of pressure rating or burst pressure predictions nor is there much information about how and where failures occur. This work includes high pressure bursting of three semicircular header prototypes for the validation of three aspects: (1) burst pressure predictions from the BPVC, (2) strain predictions from Finite Element Analysis (FEA), and (3) deformation from FEA. The header prototypes were designed with geometry and weld specifications from the BPVC Section VIII Division 1, a design pressure typical of sCO2 service of 3,900 psi (26.9 MPa), and were built with 316 SS. Repeating the test in triplicate allows for greater confidence in the experimental results and enables data averaging. Burst pressure predictions are compared with experimental results for accuracy assessment. The prototypes are analyzed to understand their failure mechanism and locations. Experimental strain and deformation measurements were obtained optically with Digital Image Correlation (DIC). This technique allows strain to be measured in two dimensions and even allows for deformation measurements, all without contacting the prototype. Eight cameras are used for full coverage of both headers on the prototypes. The rich data from this technique are an excellent validation source for FEA strain and deformation predictions. Experimental data and simulation predictions are compared to assess simulation accuracy.

More Details

Microchannel heat exchanger flow validation study

Proceedings of the ASME Turbo Expo

Lance, Blake L.; Carlson, Matthew D.

Flow maldistribution in microchannel heat exchanger(MCHEs) can negatively impact heat exchanger effectiveness.Several rules of thumb exist about designing for uniform flow,but very little data are published to support these claims. In thiswork, complementary experiments and computational fluiddynamics (CFD) simulations of MCHEs enable a solidunderstanding of flow uniformity to a higher level of detail thanpreviously seen. Experiments provide a validation data source toassess CFD predictive capability. The traditional semi-circularheader geometry is tested. Experiments are carried out in a clearacrylic MCHE and water flow is measured optically with particleimage velocimetry. CFD boundary conditions are matched tothose in the experiment and the outputs, specifically velocity andturbulent kinetic energy profiles, are compared.

More Details
Results 1–50 of 85
Results 1–50 of 85