Publications

8 Results
Skip to search filters

Impacts of Substrate Thinning on FPGA Performance and Reliability [Slides]

Leonhardt, Darin L.; Cannon, Matthew J.; Dodds, Nathaniel A.; Fellows, Matthew W.; Grzybowski, Thomas A.; Haase, Gad S.; Lee, David S.; LeBoeuf, Thomas L.; rice, William r.

Substrate thinning is necessary in devices with flip-chip BGA packages to enable both radiation testing and component qualification and high-spatial resolution beam-based failure analysis methods. We investigated three factors affecting device performance: subsurface damage from the thinning process, reduced heat spreading in thin substrates, and changes in device switching speed. We conclude subsurface damage to crystalline Si caused by the thinning process is removable with sufficient SiO2 slurry polishing. Local temperature differences increase minimally in devices thinned to 3 μm. Compressive stress in the Si increases globally after device thinning and leads to slowing of ring oscillator frequency by about 0.5% compared to full-thickness devices. Future work will include extending the results to submicron Si thickness values, which also has important benefits for failure analysis, debug, and security assessments. We also plan to extend this type of work to other FPGAs and other devices like memory and processors.

More Details

Multiscale System Modeling of Single-Event-Induced Faults in Advanced Node Processors

IEEE Transactions on Nuclear Science

Cannon, Matthew J.; Rodrigues, Arun; Black, Dolores A.; Black, Jeff; Bustamante, Luis G.; Breeding, Matthew; Feinberg, Benjamin F.; Skoufis, Micahel; Quinn, Heather; Clark, Lawrence T.; Brunhaver, John S.; Barnaby, Hugh; McLain, Michael L.; Agarwal, Sapan A.; Marinella, Matthew J.

Integration-technology feature shrink increases computing-system susceptibility to single-event effects (SEE). While modeling SEE faults will be critical, an integrated processor's scope makes physically correct modeling computationally intractable. Without useful models, presilicon evaluation of fault-tolerance approaches becomes impossible. To incorporate accurate transistor-level effects at a system scope, we present a multiscale simulation framework. Charge collection at the 1) device level determines 2) circuit-level transient duration and state-upset likelihood. Circuit effects, in turn, impact 3) register-transfer-level architecture-state corruption visible at 4) the system level. Thus, the physically accurate effects of SEEs in large-scale systems, executed on a high-performance computing (HPC) simulator, could be used to drive cross-layer radiation hardening by design. We demonstrate the capabilities of this model with two case studies. First, we determine a D flip-flop's sensitivity at the transistor level on 14-nm FinFet technology, validating the model against published cross sections. Second, we track and estimate faults in a microprocessor without interlocked pipelined stages (MIPS) processor for Adams 90% worst case environment in an isotropic space environment.

More Details
8 Results
8 Results