Unraveling Sensitivity and Ensuring Reliability in Reynolds Stress Predictions for Data-Driven RANS
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Fluids
The elemental equation governing heat transfer in aerodynamic flows is the internal energy equation. For a boundary layer flow, a double integration of the Reynolds-averaged form of this equation provides an expression of the wall heat flux in terms of the integrated effects, over the boundary layer, of various physical processes: turbulent dissipation, mean dissipation, turbulent heat flux, etc. Recently available direct numerical simulation data for a Mach 11 cold-wall turbulent boundary layer allows a comparison of the exact contributions of these terms in the energy equation to the wall heat flux with their counterparts modeled in the Reynolds-averaged Navier-Stokes (RANS) framework. Various approximations involved in RANS, both closure models as well as approximations involved in adapting incompressible RANS models to a compressible form, are assessed through examination of the internal energy balance. There are a number of potentially problematic assumptions and terms identified through this analysis. The effect of compressibility corrections of the dilatational dissipation type is explored, as is the role of the modeled turbulent dissipation, in the context of wall heat flux predictions. The results indicate several potential avenues for RANS model improvement for hypersonic cold-wall boundary-layer flows.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIAA AVIATION 2022 Forum
We develop methods that could be used to qualify a training dataset and a data-driven turbulence closure trained on it. By qualify, we mean identify the kind of turbulent physics that could be simulated by the data-driven closure. We limit ourselves to closures for the Reynolds-Averaged Navier Stokes (RANS) equations. We build on our previous work on assembling feature-spaces, clustering and characterizing Direct Numerical Simulation datasets that are typically pooled to constitute training datasets. In this paper, we develop an alternative way to assemble feature-spaces and thus check the correctness and completeness of our previous method. We then use the characterization of our training dataset to identify if a data-driven turbulence closure learned on it would generalize to an unseen flow configuration – an impinging jet in our case. Finally, we train a RANS closure architected as a neural network, and develop an explanation i.e., an interpretable approximation, using generalized linear mixed-effects models and check whether the explanation resembles a contemporary closure from turbulence modeling.
AIAA AVIATION 2022 Forum
We develop methods that could be used to qualify a training dataset and a data-driven turbulence closure trained on it. By qualify, we mean identify the kind of turbulent physics that could be simulated by the data-driven closure. We limit ourselves to closures for the Reynolds-Averaged Navier Stokes (RANS) equations. We build on our previous work on assembling feature-spaces, clustering and characterizing Direct Numerical Simulation datasets that are typically pooled to constitute training datasets. In this paper, we develop an alternative way to assemble feature-spaces and thus check the correctness and completeness of our previous method. We then use the characterization of our training dataset to identify if a data-driven turbulence closure learned on it would generalize to an unseen flow configuration – an impinging jet in our case. Finally, we train a RANS closure architected as a neural network, and develop an explanation i.e., an interpretable approximation, using generalized linear mixed-effects models and check whether the explanation resembles a contemporary closure from turbulence modeling.
Abstract not provided.
Machine-learned models, specifically neural networks, are increasingly used as “closures” or “constitutive models” in engineering simulators to represent fine-scale physical phenomena that are too computationally expensive to resolve explicitly. However, these neural net models of unresolved physical phenomena tend to fail unpredictably and are therefore not used in mission-critical simulations. In this report, we describe new methods to authenticate them, i.e., to determine the (physical) information content of their training datasets, qualify the scenarios where they may be used and to verify that the neural net, as trained, adhere to physics theory. We demonstrate these methods with neural net closure of turbulent phenomena used in Reynolds Averaged Navier-Stokes equations. We show the types of turbulent physics extant in our training datasets, and, using a test flow of an impinging jet, identify the exact locations where the neural network would be extrapolating i.e., where it would be used outside the feature-space where it was trained. Using Generalized Linear Mixed Models, we also generate explanations of the neural net (à la Local Interpretable Model agnostic Explanations) at prototypes placed in the training data and compare them with approximate analytical models from turbulence theory. Finally, we verify our findings by reproducing them using two different methods.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIAA Scitech 2021 Forum
This paper explores unsupervised learning approaches for analysis and categorization of turbulent flow data. Single point statistics from several high-fidelity turbulent flow simulation data sets are classified using a Gaussian mixture model clustering algorithm. Candidate features are proposed, which include barycentric coordinates of the Reynolds stress anisotropy tensor, as well as scalar and angular invariants of the Reynolds stress and mean strain rate tensors. A feature selection algorithm is applied to the data in a sequential fashion, flow by flow, to identify a good feature set and an optimal number of clusters for each data set. The algorithm is first applied to Direct Numerical Simulation data for plane channel flow, and produces clusters that are consistent with turbulent flow theory and empirical results that divide the channel flow into a number of regions (viscous sub-layer, log layer, etc). Clusters are then identified for flow over a wavy-walled channel, flow over a bump in a channel, and flow past a square cylinder. Some clusters are closely identified with the anisotropy state of the turbulence, as indicated by the location within the barycentric map of the Reynolds stress tensor. Other clusters can be connected to physical phenomena, such as boundary layer separation and free shear layers. Exemplar points from the clusters, or prototypes, are then identified using a prototype selection method. These exemplars summarize the dataset by a factor of 10 to 1000. The clustering and prototype selection algorithms provide a foundation for physics-based, semi-automated classification of turbulent flow states and extraction of a subset of data points that can serve as the basis for the development of explainable machine-learned turbulence models.
Abstract not provided.
Abstract not provided.
The development of a next generation high-fidelity modeling code for wind plant applications is one of the central focus areas of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative. The code is based on a highly scalable framework, currently called Nalu-Wind. One key aspect of the model development is a coordinated formal validation program undertaken specifically to establish the predictive capability of Nalu-Wind for wind plant applications. The purpose of this document is to define the verification and validation (V&V) plan for the A2e high-fidelity modeling capability. It summarizes the V&V framework, identifies code capability users and use cases, describes model validation needs, and presents a timeline to meet those needs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIAA Aviation 2019 Forum
Near-wall turbulence models in Large-Eddy Simulation (LES) typically approximate near-wall behavior using a solution to the mean flow equations. This approach inevitably leads to errors when the modeled flow does not satisfy the assumptions surrounding the use of a mean flow approximation for an unsteady boundary condition. Herein, modern machine learning (ML) techniques are utilized to implement a coordinate frame invariant model of the wall shear stress that is derived specifically for complex flows for which mean near-wall models are known to fail. The model operates on a set of scalar and vector invariants based on data taken from the first LES grid point off the wall. Neural networks were trained and validated on spatially filtered direct numerical simulation (DNS) data. The trained networks were then tested on data to which they were never previously exposed and comparisons of the accuracy of the networks’ predictions of wall-shear stress were made to both a standard mean wall model approach and to the true stress values taken from the DNS data. The ML approach showed considerable improvement in both the accuracy of individual shear stress predictions as well as produced a more accurate distribution of wall shear stress values than did the standard mean wall model. This result held both in regions where the standard mean approach typically performs satisfactorily as well as in regions where it is known to fail, and also in cases where the networks were trained and tested on data taken from the same flow type/region as well as when trained and tested on data from different respective flow topologies.
Abstract not provided.
Computers and Fluids
An implicit, low-dissipation, low-Mach, variable density control volume finite element formulation is used to explore foundational understanding of numerical accuracy for large-eddy simulation applications on hybrid meshes. Detailed simulation comparisons are made between low-order hexahedral, tetrahedral, pyramid, and wedge/prism topologies against a third-order, unstructured hexahedral topology. Using smooth analytical and manufactured low-Mach solutions, design-order convergence is established for the hexahedral, tetrahedral, pyramid, and wedge element topologies using a new open boundary condition based on energy-stable methodologies previously deployed within a finite-difference context. A wide range of simulations demonstrate that low-order hexahedral- and wedge-based element topologies behave nearly identically in both computed numerical errors and overall simulation timings. Moreover, low-order tetrahedral and pyramid element topologies also display nearly the same numerical characteristics. Although the superiority of the hexahedral-based topology is clearly demonstrated for trivial laminar, principally-aligned flows, e.g., a 1x2x10 channel flow with specified pressure drop, this advantage is reduced for non-aligned, turbulent flows including the Taylor–Green Vortex, turbulent plane channel flow (Reτ395), and buoyant flow past a heated cylinder. With the order of accuracy demonstrated for both homogenous and hybrid meshes, it is shown that solution verification for the selected complex flows can be established for all topology types. Although the number of elements in a mesh of like spacing comprised of tetrahedral, wedge, or pyramid elements increases as compared to the hexahedral counterpart, for wall-resolved large-eddy simulation, the increased assembly and residual evaluation computational time for non-hexahedral is offset by more efficient linear solver times. Lastly, most simulation results indicate that modest polynomial promotion provides a significant increase in solution accuracy.
Abstract not provided.
Abstract not provided.
Deep-water offshore sites are an untapped opportunity to bring large-scale offshore wind energy to coastal population centers. The primary challenge has been the projected high costs for floating offshore wind systems. This work presents a comprehensive investigation of a new opportunity for deep-water offshore wind using large-scale vertical axis wind turbines. Owing to inherent features of this technology, there is a potential transformational opportunity to address the major cost drivers for floating wind using vertical axis wind turbines. The focus of this report is to evaluate the technical potential for this new technology. The approach to evaluating this potential was to perform system design studies focused on improving the understanding of technical performance parameters while looking for cost reduction opportunities. VAWT design codes were developed in order to perform these design studies. To gain a better understanding of the design space for floating VAWT systems, a comprehensive design study of multiple rotor configuration options was carried out. Floating platforms and moorings were then sized and evaluated for each of the candidate rotor configurations. Preliminary LCOE estimates and LCOE ranges were produced based on the design study results for each of the major turbine and system components. The major outcomes of this study are a comprehensive technology assessment of VAWT performance and preliminary LCOE estimates that demonstrate that floating VAWTs may have favorable performance and costs in comparison to conventional HAWTs in the deep-water offshore environment where floating systems are required, indicating that this new technology warrants further study.
Abstract not provided.
Abstract not provided.
Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating ow simulations are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic improvements have been carried out to increase robustness of the scheme on hybrid production wind energy meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements, matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase, e.g., 500 million elements, simulation time associated with \setup-up" costs can increase to nearly 50% of overall simulation time when using the full Tpetra solver stack and nearly 35% when using a mixed Tpetra- Hypre-based solver stack. The report also highlights the project achievement of surpassing the 1 billion element mesh scale for a production V27 hybrid mesh. A detailed timing breakdown is presented that again suggests work to be done in the setup events associated with the linear system. In order to mitigate these initialization costs, several application paths have been explored, all of which are designed to reduce the frequency of matrix reinitialization. Methods such as removing Jacobian entries on the dynamic matrix columns (in concert with increased inner equation iterations), and lagging of Jacobian entries have reduced setup times at the cost of numerical stability. Artificially increasing, or bloating, the matrix stencil to ensure that full Jacobians are included is developed with results suggesting that this methodology is useful in decreasing reinitialization events without loss of matrix contributions. With the above foundational advances in computational capability, the project is well positioned to begin scientific inquiry on a variety of wind-farm physics such as turbine/turbine wake interactions.
Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating flow simulations are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic improvements have been carried out to increase robustness of the scheme on hybrid production wind energy meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements, matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase, e.g., 500 million elements, simulation time associated with "setup-up" costs can increase to nearly 50% of overall simulation time when using the full Tpetra solver stack and nearly 35% when using a mixed Tpetra- Hypre-based solver stack. The report also highlights the project achievement of surpassing the 1 billion element mesh scale for a production V27 hybrid mesh. A detailed timing breakdown is presented that again suggests work to be done in the setup events associated with the linear system. In order to mitigate these initialization costs, several application paths have been explored, all of which are designed to reduce the frequency of matrix reinitialization. Methods such as removing Jacobian entries on the dynamic matrix columns (in concert with increased inner equation iterations), and lagging of Jacobian entries have reduced setup times at the cost of numerical stability. Artificially increasing, or bloating, the matrix stencil to ensure that full Jacobians are included is developed with results suggesting that this methodology is useful in decreasing reinitialization events without loss of matrix contributions. With the above foundational advances in computational capability, the project is well positioned to begin scientific inquiry on a variety of wind-farm physics such as turbine/turbine wake interactions.
Abstract not provided.
This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.
Abstract not provided.
This report documents work performed using ALCC computing resources granted under a proposal submitted in February 2016, with the resource allocation period spanning the period July 2016 through June 2017. The award allocation was 10.7 million processor-hours at the National Energy Research Scientific Computing Center. The simulations performed were in support of two projects: the Atmosphere to Electrons (A2e) project, supported by the DOE EERE office; and the Exascale Computing Project (ECP), supported by the DOE Office of Science. The project team for both efforts consists of staff scientists and postdocs from Sandia National Laboratories and the National Renewable Energy Laboratory. At the heart of these projects is the open-source computational-fluid-dynamics (CFD) code, Nalu. Nalu solves the low-Mach-number Navier-Stokes equations using an unstructured- grid discretization. Nalu leverages the open-source Trilinos solver library and the Sierra Toolkit (STK) for parallelization and I/O. This report documents baseline computational performance of the Nalu code on problems of direct relevance to the wind plant physics application - namely, Large Eddy Simulation (LES) of an atmospheric boundary layer (ABL) flow and wall-modeled LES of a flow past a static wind turbine rotor blade. Parallel performance of Nalu and its constituent solver routines residing in the Trilinos library has been assessed previously under various campaigns. However, both Nalu and Trilinos have been, and remain, in active development and resources have not been available previously to rigorously track code performance over time. With the initiation of the ECP, it is important to establish and document baseline code performance on the problems of interest. This will allow the project team to identify and target any deficiencies in performance, as well as highlight any performance bottlenecks as we exercise the code on a greater variety of platforms and at larger scales. The current study is rather modest in scale, examining performance on problem sizes of O(100 million) elements and core counts up to 8k cores. This will be expanded as more computational resources become available to the projects.
Handbook of Uncertainty Quantification
When faced with a restrictive evaluation budget that is typical of today's highfidelity simulation models, the effective exploitation of lower-fidelity alternatives within the uncertainty quantification (UQ) process becomes critically important. Herein, we explore the use of multifidelity modeling within UQ, for which we rigorously combine information from multiple simulation-based models within a hierarchy of fidelity, in seeking accurate high-fidelity statistics at lower computational cost. Motivated by correction functions that enable the provable convergence of a multifidelity optimization approach to an optimal high-fidelity point solution, we extend these ideas to discrepancy modeling within a stochastic domain and seek convergence of a multifidelity uncertainty quantification process to globally integrated high-fidelity statistics. For constructing stochastic models of both the low-fidelity model and the model discrepancy, we employ stochastic expansion methods (non-intrusive polynomial chaos and stochastic collocation) computed by integration/interpolation on structured sparse grids or regularized regression on unstructured grids. We seek to employ a coarsely resolved grid for the discrepancy in combination with a more finely resolved Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Grid for the low-fidelity model. The resolutions of these grids may be defined statically or determined through uniform and adaptive refinement processes. Adaptive refinement is particularly attractive, as it has the ability to preferentially target stochastic regions where the model discrepancy becomes more complex, i.e., where the predictive capabilities of the low-fidelity model start to break down and greater reliance on the high-fidelity model (via the discrepancy) is necessary. These adaptive refinement processes can either be performed separately for the different grids or within a coordinated multifidelity algorithm. In particular, we present an adaptive greedy multifidelity approach in which we extend the generalized sparse grid concept to consider candidate index set refinements drawn from multiple sparse grids, as governed by induced changes in the statistical quantities of interest and normalized by relative computational cost. Through a series of numerical experiments using statically defined sparse grids, adaptive multifidelity sparse grids, and multifidelity compressed sensing, we demonstrate that the multifidelity UQ process converges more rapidly than a single-fidelity UQ in cases where the variance of the discrepancy is reduced relative to the variance of the high-fidelity model (resulting in reductions in initial stochastic error), where the spectrum of the expansion coefficients of the model discrepancy decays more rapidly than that of the high-fidelity model (resulting in accelerated convergence rates), and/or where the discrepancy is more sparse than the high-fidelity model (requiring the recovery of fewer significant terms).
Abstract not provided.
Abstract not provided.