Incorporating In-situ Monitoring to Detect Anomalies in Additively Manufactured Kovar Steel on a Layer-to-Layer Basis
Abstract not provided.
Abstract not provided.
In-situ additive manufacturing (AM) diagnostic tools (e.g., optical/infrared imaging, acoustic, etc.) already exist to correlate process anomalies to printed part defects. This current work aimed to augment existing capabilities by: 1) Incorporating in-situ imaging w/ machine learning (ML) image processing software (ORNL- developed "Peregrine") for AM process anomaly detection 2) Synchronizing multiple in-situ sensors for simultaneous analysis of AM build events 3) Correlating in-situ AM process data, generated part defects and part mechanical properties The key R&D question investigated was to determine if these new combined hardware/software tools could be used to successfully quantify defect distributions for parts build via SNL laser powder bed fusion (LPBF) machines, aiming to better understand data-driven process-structure-property- performance relationships. High resolution optical cameras and acoustic microphones were successfully integrated in two LPBF machines and linked to the Peregrine ML software. The software was successfully calibrated on both machines and used to image hundreds of layers of multiple builds to train the ML software in identifying printed part vs powder. The software's validation accuracy to identify this aspect increased from 56% to 98.8% over three builds. Lighting conditions inside the chamber were found to significantly impact ML algorithm predictions from in-situ sensors, so these were tailored to each machine's internal framework. Finally, 3D part reconstructions were successfully generated for a build from the compressed stack of layer-wise images. Resolution differences nearest and furthest from the optical camera were discussed. Future work aims to improve optical resolution, increase process anomalies identified, and integrate more sensor modalities.