Publications

26 Results
Skip to search filters

The Optimal Control of an Electric Warship Driven by an Operational Vignette

2021 IEEE Electric Ship Technologies Symposium, ESTS 2021

Young, Joseph; Wilson, David G.; Cook, Marvin A.

The following paper presents a framework for the optimal control of an electric warship using a load profile derived from an operational vignette. This framework consists of three key components: a reduced order model of an electric ship, a discretization of the resulting constitutive equations using an orthogonal spline collocation method, and an optimization engine to solve the resulting formulation. Once assembled, this control framework is validated through its application to a four zone model of a medium voltage DC (MVDC) electric ship using a load profile from an operational vignette,

More Details

Energy Surety Design Methodology

Broderick, Robert J.; Cook, Marvin A.; DeMenno, Mercy D.; El Khatib, Mohamed E.; Guttromson, Ross G.; Hightower, Michael H.; Jones, Katherine A.; Nanco, Alan N.; Schenkman, Benjamin L.; Schoenwald, David A.; Silva Monroy, Cesar S.

The Energy Surety Design Methodology (ESDM) provides a systematic approach for engineers and researchers to create a preliminary electric grid design, thus establishing a means to preserve and quickly restore customer-specified critical loads. Over a decade ago, Sandia National Laboratories (Sandia) defined Energy Surety for applications with energy systems to include elements of reliability, security, safety, cost, and environmental impact. Since then, Sandia has employed design concepts of energy surety for over 20 military installations and their interaction with utility systems, including the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. In recent years, resilience has also been added as a key element of energy surety. This methodology document includes both process recommendations and technical guidance, with references to useful tools and analytic approaches at each step of the process.

More Details

Smart Grid R&D SSM KIER FY17 Report

Wilson, David G.; Cook, Marvin A.

This report summarizes collaborative efforts between Secure Scalable Microgrid and Korean Institute of Energy Research team members . The efforts aim to advance microgrid research and development towards the efficient utilization of networked microgrids . The collaboration resulted in the identification of experimental and real time simulation capabilities that may be leveraged for networked microgrids research, development, and demonstration . Additional research was performed to support the demonstration of control techniques within real time simulation and with hardware in the loop for DC microgrids .

More Details

A predictive engine for on-line optimal microgrid control

2017 IEEE Electric Ship Technologies Symposium, ESTS 2017

Young, Joseph; Cook, Marvin A.; Wilson, David G.

This research presents a predictive engine that integrates into an on-line optimal control planner for electrical microgrids. This controller models the behavior of the underlying system over a specified time horizon and then solves for a control over this period. In an electrical microgrid, such predictions are challenging to obtain in the presence of errors in the sensor information. The likelihood of instrumentation errors increases as microgrids become more complex and cyber threats more common. In order to overcome these difficulties, details are provided about a predictive engine robust to errors.

More Details

Hamiltonian control design for DC microgrids with stochastic sources and loads with applications

2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014

Wilson, David G.; Neely, Jason C.; Cook, Marvin A.; Glover, Steven F.; Young, Joseph; Robinett, Rush D.

To achieve high performance operation of micro-grids that contain stochastic sources and loads is a challenge that will impact cost and complexity. Developing alternative methods for controlling and analyzing these systems will provide insight into tradeoffs that can be made during the design phase. This paper presents a design methodology, based on Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) [1] for a hierarchical control scheme that regulates renewable energy sources and energy storage in a DC micro-grid. Recent literature has indicated that there exists a trade-off in information and power flow and that intelligent, coordinated control of power flow in a microgrid system can modify energy storage hardware requirements. Two scenarios are considered; i) simple two stochastic source with variable load renewable DC Microgrid example and ii) a three zone electric ship with DC Microgrid and varying pulse load profiles. © 2014 IEEE.

More Details
26 Results
26 Results