Publications

86 Results
Skip to search filters

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Stauffer, Phil S.; Boukhalfa, Hakim B.; Guiltinan, Eric J.; Rahn, Thom R.; Weaver, Doug W.; Otto, Shawn O.; Davis, Jon D.; Rutqvist, Jonny R.; Wu, Yuxin W.; Hu, Mengsu H.; Wang, Jiannan W.

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

Gamma radiation sterilization of N95 respirators leads to decreased respirator performance

PLoS ONE

DeAngelis, Haedi E.; Grillet, Anne M.; Nemer, Martin N.; Wasiolek, Maryla A.; Hanson, Donald J.; Omana, Michael A.; Sanchez, A.L.; Vehar, David W.; Thelen, Paul M.

In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40–50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss.

More Details

COVID-19 global pandemic planning: Performance and electret charge of N95 respirators after recommended decontamination methods

Experimental Biology and Medicine

Grillet, Anne M.; Nemer, Martin N.; Storch, Steven M.; Martinez-Sanchez, Andres M.; Piekos, Edward S.; Leonard, Jonathan C.; Hurwitz, Ivy; Perkins, Douglas J.

Shortages of N95 respirators for use by medical personnel have driven consideration of novel conservation strategies, including decontamination for reuse and extended use. Decontamination methods listed as promising by the Centers for Disease Control and Prevention (CDC) (vaporous hydrogen peroxide (VHP), wet heat, ultraviolet irradiation (UVI)) and several methods considered for low resource environments (bleach, isopropyl alcohol and detergent/soap) were studied for two commonly used surgical N95 respirators (3M™ 1860 and 1870+ Aura™). Although N95 filtration performance depends on the electrostatically charged electret filtration layer, the impact of decontamination on this layer is largely unexplored. As such, respirator performance following decontamination was assessed based on the fit, filtration efficiency, and pressure drop, along with the relationship between (1) surface charge of the electret layer, and (2) elastic properties of the straps. Decontamination with VHP, wet heat, UVI, and bleach did not degrade fit and filtration performance or electret charge. Isopropyl alcohol and soap significantly degraded fit, filtration performance, and electret charge. Pressure drop across the respirators was unchanged. Modest degradation of N95 strap elasticity was observed in mechanical fatigue testing, a model for repeated donnings and doffings. CDC recommended decontamination methods including VHP, wet heat, and UV light did not degrade N95 respirator fit or filtration performance in these tests. Extended use of N95 respirators may degrade strap elasticity, but a loss of face seal integrity should be apparent during user seal checks. NIOSH recommends performing user seal checks after every donning to detect loss of appropriate fit. Decontamination methods which degrade electret charge such as alcohols or detergents should not be used on N95 respirators. The loss of N95 performance due to electret degradation would not be apparent to a respirator user or evident during a negative pressure user seal check.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn O.; Dozier, Brian D.; Weaver, Doug W.; Stauffer, Phil S.; Guiltinan, Eric J.; Boukhalfa, Hakim B.; Rahn, Thom R.; Wu, Yuxin W.; Rutqvist, Jonny R.; Hu, Mengsu H.; Crandall, Dustin C.

Abstract not provided.

Alternative Materials for Mask Construction by the Public

Nemer, Martin N.; Grillet, Anne M.; Sanchez, A.L.; Emmer, Katharyn M.

N95 respirators became scarce to the general public in mid-to-late March of 2020 due to the SARS-CoV-2 epidemic. By mid-April of 2020, most states in the United States were requiring face coverings to be worn while in public enclosed places and in busy outdoor areas where groups of people were in close proximity. Many resorted to cloth masks, homemade masks, procedure masks obtained through online purchases, and other ad-hoc means. Thus, there was and still is a need to determine the aerosol filtration efficacy of commonly available materials that can be used for homemade mask construction. This study focused on non- woven polymeric fabrics that are readily available for homemade mask construction. The conclusion of this study is that non-woven materials that carry a high electric charge or those that can easily acquire charge had the highest aerosol filtration efficiency per unit of pressure drop. Future work should examine a wider variety of these materials and determine the maximum pressure drop that a nominal homemade mask can withstand before a significant portion of airflow is diverted around the mask. More broadly, a better understanding of the charge state on non-woven materials and impact of that charge state on filtration efficiency is needed.

More Details

Wireless Temperature Sensing Using Permanent Magnets for Nonlinear Feedback Control of Exothermic Polymers

IEEE Sensors Journal

Mazumdar, Anirban; Chen, Yi; van Bloemen Waanders, Bart G.; Brooks, Carlton F.; Kuehl, Michael K.; Nemer, Martin N.

Epoxies and resins can require careful temperature sensing and control in order to monitor and prevent degradation. To sense the temperature inside a mold, it is desirable to utilize a small, wireless sensing element. In this paper, we describe a new architecture for wireless temperature sensing and closed-loop temperature control of exothermic polymers. This architecture is the first to utilize magnetic field estimates of the temperature of permanent magnets within a temperature feedback control loop. We further improve performance and applicability by demonstrating sensing performance at relevant temperatures, incorporating a cure estimator, and implementing a nonlinear temperature controller. This novel architecture enables unique experimental results featuring closed-loop control of an exothermic resin without any physical connection to the inside of the mold. In this paper, we describe each of the unique features of this approach, including magnetic field-based temperature sensing, extended Kalman filtering for cure state estimation, and nonlinear feedback control over time-varying temperature trajectories. We use experimental results to demonstrate how low-cost permanent magnets can provide wireless temperature sensing up to ∼ 90°C. In addition, we use a polymer cure-control testbed to illustrate how internal temperature sensing can provide improved temperature control over both short and long time-scales. This wireless temperature sensing and control architecture holds value for a range of manufacturing applications.

More Details

Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

IEEE Transactions on Magnetics

Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.; van Bloemen Waanders, Bart G.; Bond, Stephen D.; Nemer, Martin N.

Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. In this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results show that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μ m when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Last, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.

More Details

Absence of mineral colloids in high ionic strength solutions associated with salt formations: Experimental determination and applications for nuclear waste management

Solution Chemistry: Advances in Research and Applications

Xiong, Yongliang X.; Kirkes, Leslie D.; Kim, Sungtae K.; Marrs, Cassandra M.; Knox, Jandi L.; Dean, Justin; Deng, Haoran; Nemer, Martin N.

Radionuclides and heavy metals easily sorb onto colloids. This phenomenon can have a beneficial impact on environmental clean-up activities if one is trying to scavenge hazardous elements from soil for example. On the other hand, it can have a negative impact in cases where one is trying to immobilize these hazardous elements and keep them isolated from the public. Such is the case in the field of radioactive waste disposal. Colloids in the aqueous phase in a radioactive waste repository could facilitate transport of contaminants including radioactive nuclides. Salt formations have been recommended for nuclear waste isolation since the 1950's by the U.S. National Academy of Science. In this capacity, salt formations are ideal for isolation of radioactive waste. However, salt formations contain brine (the aqueous phase), and colloids could possibly be present. If present in the brines associated with salt formations, colloids are highly relevant to the isolation safety concept for radioactive waste. The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico is a premier example where a salt formation is being used as the primary isolation barrier for radioactive waste. WIPP is a U.S. Department of Energy geological repository for the permanent disposal of defenserelated transuranic (TRU) waste. In addition to the geological barrier that the bedded salt formation provides, an engineered barrier of MgO added to the disposal rooms is used in WIPP. Industrial-grade MgO, consisting mainly of the mineral periclase, is in fact the only engineered barrier certified by the U.S. Environmental Protection Agency (EPA) for emplacement in the WIPP. Of interest, an Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The Asse repository is located in a domal salt formation and is another example of using salt formations for disposal of radioactive waste. Should colloids be present in salt formations, they would facilitate transport of contaminants including actinides. In the case of colloids derived from emplaced MgO, it is the hydration and carbonation products that are of interest. These colloids could possibly form under conditions relevant in particular to the WIPP. In this chapter, we report a systematic experimental study performed at Sandia National Laboratories in Carlsbad, New Mexico, related to the WIPP engineered barrier, MgO. The aim of this work is to confirm the presence or absence of mineral fragment colloids related to MgO in high ionic strength solutions (brines). The results from such a study provides information about the stability of colloids in high ionic strength solutions in general, not just for the WIPP. We evaluated the possible formation of mineral fragment colloids using two approaches. The first approach is an analysis of long-term MgO hydration and carbonation experiments performed at Sandia National Laboratories (SNL) as a function of equivalent pore sizes. The MgO hydration products include Mg(OH)2 (brucite) and Mg3 Cl(OH)5•4H2O (phase 5), and the carbonation product includes Mg5(CO3)4(OH)2•4H2O (hydromagnesite). All these phases contain magnesium. Therefore, if mineral fragment colloids of these hydration and carbonation products were formed in the SNL experiments mentioned above, magnesium concentrations in the filtrate from the experiments would show a dependence on ultrafiltration. In other words, there would be a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs for the filtration. Therefore, we performed ultrafiltration on solution samples from the SNL hydration and carbonation experiments as a function of equivalent pore size. We filtered solutions using a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cutoffs, implying the absence of mineral fragment colloids. The second approach uses spiked Cs+ to indicate the possible presence of mineral fragment colloids. Cs+ is easily absorbed by colloids. Therefore, we added Cs+ to a subset of SNL MgO hydration and carbonation experiments. Again, we filtered the solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. This time we measured the concentrations of Cs. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate the absence of mineral fragment colloids from MgO hydration and carbonation products. Based on our experimental results, we acknowledge that mineral fragment colloids were not formed in the SNL MgO hydration and carbonation experiments, and we further conclude that high ionic strength solutions associated with salt formations prevent the formation of mineral fragment colloids. This is due to the fact that the high ionic strength solutions associated with salt formations have high concentrations of both monovalent and divalent metal ions that are orders of magnitude higher than the critical coagulation concentrations for mineral fragment colloids. The absence of mineral fragment colloids in high ionic strength solutions implies that contributions from mineral fragment colloids to the total mobile source term of radionuclides in a salt repository are minimal.

More Details

Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

ACS Earth and Space Chemistry

Kim, Sungtae K.; Marrs, Cassandra M.; Nemer, Martin N.; Jang, Jay J.

Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH)2(s)), hibbingite (Fe2Cl(OH)3(s)), siderite (FeCO3(s)), and chukanovite (Fe2CO3(OH)2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH)2(s) was observed in the experiments that were initiated with Fe2Cl(OH)3(s) in Na2SO4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na2CO3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH)2(s) and Fe2Cl(OH)3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO3)2–2. Five Pitzer interaction parameters were derived in this paper: β(0), β(1), and Cφ parameters for the species pair Fe+2/SO4–2; β(0) and β(1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10–91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).

More Details

Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

Roberts, Christine C.; Graham, Alan G.; Nemer, Martin N.; Phinney, Leslie M.; Garcia, Robert M.; Soehnel, Melissa M.; Stirrup, Emily K.

Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

More Details

Remote Temperature Distribution Sensing Using Permanent Magnets

IEEE Transactions on Magnetics

Chen, Yi; Guba, Oksana G.; Brooks, Carlton F.; Roberts, Christine C.; van Bloemen Waanders, Bart G.; Nemer, Martin N.

Remote temperature sensing is essential for applications in enclosed vessels, where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations, and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of nine magnets in different configurations over a temperature range of 5 °C to 60 °C and for a sensor-to-magnet distance of up to 35 mm. To show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.

More Details

Absence of colloids related to engineered barrier (MGO): Experimental determination

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Xiong, Yongliang X.; Kirkes, Leslie D.; Kim, Sungtae K.; Marrs, Cassandra M.; Dean, Justin; Knox, Jandi L.; Deng, Haoran D.; Nemer, Martin N.

More Details

Strategic Petroleum Reserve Cemented Annulus Modeling and Testing; FY16 Progress

Nemer, Martin N.; Kuhlman, Kristopher L.; Newell, Pania N.; Bettin, Giorgia B.

Sandia National Laboratories has begun developing modeling and analysis tools of flow through the cemented port ion of a cemented annulus in a Strategic Petroleum Reserve (SPR) well since August of 201 5 . The goal of this work is to develop model s and testing procedures to diagnose the health of cemented annuli at SPR sites. In Fiscal Year 2016 (FY16), we have developed several tests and associated models that we believe are sufficient for this purpose. This report outlines progress made in FY16 and future work.

More Details

Controls on Incomplete Mixing of Injected Raw Water and Brine in Strategic Petroleum Reserve Salt Caverns

Heath, Jason; Nemer, Martin N.; Chojnicki, Kirsten C.

Mixing of injected raw (undersaturated) water with brine in Strategic Petroleum Reserve (SPR) salt caverns affects the shape of cavern walls due to leaching. Cavern shape impacts cavern geomechanical stability and available volume for oil storage. Raw water injection occurs during initial solution mining of caverns, remedial leaching of caverns, and oil drawdown. Of interest are factors that control the degree of raw water-brine mixing and thereby the concentration of the aqueous fluid mixture that contacts the salt cavern walls. It is hypothesized that poorly-mixed fresh water could potentially cause undesirable and non-uniform leaching , for example, if buoyant poorly-mixed fresh water collects and preferentially leaches under the oil-brine interface . This report presents current understanding of controls on incomplete-to-complete mixing of raw water and brine, focusing on implications for SPR cavern leaching. In the context of mixing, we review the following: SPR leaching operations; models of leaching; field measurements of leaching and cavern shapes; and previous laboratory experiments of mixing and /or leaching performed at Sandia National Laboratories. We present recent laboratory experiments in 2014-2016 that focused explicitly on understanding controls of poor-to-well mixed conditions. We find that well-mixed conditions are expected for typical operating conditions of the SPR.

More Details

Wireless temperature sensing using permanent magnets for multiple points undergoing repeatable motions

ASME 2016 Dynamic Systems and Control Conference, DSCC 2016

Chen, Yi; Guba, Oksana G.; Brooks, Carlton F.; Roberts, Christine C.; van Bloemen Waanders, Bart G.; Nemer, Martin N.

Temperature monitoring is essential in automation, mechatronics, robotics and other dynamic systems. Wireless methods which can sense multiple temperatures at the same time without the use of cables or slip-rings can enable many new applications. A novel method utilizing small permanent magnets is presented for wirelessly measuring the temperature of multiple points moving in repeatable motions. The technique utilizes linear least squares inversion to separate the magnetic field contributions of each magnet as it changes temperature. The experimental setup and calibration methods are discussed. Initial experiments show that temperatures from 5 to 50 °C can be accurately tracked for three neodymium iron boron magnets in a stationary configuration and while traversing in arbitrary, repeatable trajectories. This work presents a new sensing capability that can be extended to tracking multiple temperatures inside opaque vessels, on rotating bearings, within batteries, or at the tip of complex endeffectors.

More Details

Rheological and Mechanical Property Measurements of PMDI Foam at Elevated Temperatures

Nemer, Martin N.; Brooks, Carlton F.; Shelden, Bion S.; Soehnel, Melissa M.; Barringer, David A.

A study was undertaken to determine the viscosity of liquefied 20 lb/ft3 poly methylene diisocyanate (PMDI) foam and the stress required to puncture solid PMDI foam at elevated temperatures. For the rheological measurements the foam was a priori liquefied in a pressure vessel such that the volatiles were not lost in the liquefaction process. The viscosity of the liquefied PMDI foam was found to be Newtonian with a power law dependence on temperature log10(μ/Pa s) = 20.6 – 9.5 log10(T/°C) for temperatures below 170 °C. Above 170 °C, the viscosity was in the range of 0.3 Pa s which is close to the lower measurement limit (≈ 0.1 Pa s) of the pressurized rheometer. The mechanical pressure required to break through 20lb/ft3 foam was 500-800 psi at temperatures from room temperature up to 180 °C. The mechanical pressure required to break through 10 lb/ft3 was 170-300 psi at temperatures from room temperature up to 180 °C. We have not been able to cause gas to break through the 20 lb/ft3 PMDI foam at gas pressures up to 100 psi.

More Details

Material Analysis for a Fire Assessment

Brown, Alexander B.; Nemer, Martin N.

This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

More Details

Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

AIChE Journal

Roberts, Christine C.; Brooks, Carlton F.; Hughes, Lindsey G.; Wyatt, Nicholas B.; Rao, Rekha R.; Nemer, Martin N.

A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively in both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.

More Details

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve

Nemer, Martin N.; Lord, David L.; MacDonald, Terry L.

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are "sour" by SPR standards indicating they contain total sulfur > 0.50 wt %.

More Details

Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces

Lab on a Chip

Roberts, Christine C.; Rao, Rekha R.; Loewenberg, Michael; Brooks, Carlton F.; Galambos, Paul; Grillet, Anne M.; Nemer, Martin N.

A thin flow-focusing microfluidic channel is evaluated for generating monodisperse liquid droplets. The microfluidic device is used in its native state, which is hydrophilic, or treated with OTS to make it hydrophobic. Having both hydrophilic and hydrophobic surfaces allows for creation of both oil-in-water and water-in-oil emulsions, facilitating a large parameter study of viscosity ratios (droplet fluid/continuous fluid) ranging from 0.05 to 96 and flow rate ratios (droplet fluid/continuous fluid) ranging from 0.01 to 2 in one geometry. The hydrophilic chip provides a partially-wetting surface (contact angle less than 90°) for the inner fluid. This surface, combined with the unusually thin channel height, promotes a flow regime where the inner fluid wets the top and bottom of the channel in the orifice and a stable jet is formed. Through confocal microscopy, this fluid stabilization is shown to be highly influenced by the contact angle of the liquids in the channel. Non-wetting jets undergo breakup and produce drops when the jet is comparable to or smaller than the channel thickness. In contrast, partially-wetting jets undergo breakup only when they are much smaller than the channel thickness. Drop sizes are found to scale with a modified capillary number based on the total flow rate regardless of wetting behavior. © The Royal Society of Chemistry.

More Details

Toward application of conformal decomposition finite elements to non-colloidal particle suspensions

International Journal for Numerical Methods in Fluids

Lechman, Jeremy B.; Nemer, Martin N.; Noble, David R.

Particle suspensions play an important role in many engineering applications, yet their behavior in a number of respects remains poorly understood. In conjunction with careful experiments, modeling and simulation of these systems can provide key insight into their complex behavior. However, these two-phase systems pose the challenge of simultaneously, accurately, and efficiently capturing the complex geometric structure, kinematics, and dynamics of the particulate discrete phase and the discontinuities it introduces into the variables (e.g., velocity, pressure, density) of the continuous phase. To this end, a new conformal decomposition finite element method (CDFEM) is introduced for solid particles in a viscous fluid. The method is verified in several simple test problems that are representative of aspects of particle suspension behavior. In all cases, we find the CDFEM to perform accurately and efficiently leading to the conclusion that it forms a prime candidate for application to the full direct numerical simulation of particle suspensions. © 2012 John Wiley & Sons, Ltd.

More Details

Pore-lining composition and capillary breakthrough pressure of mudstone caprocks : sealing efficiency at geologic CO2 storage sites

Dewers, Thomas D.; Kotula, Paul G.; Nemer, Martin N.

Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < {approx}800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock - thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy's National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work.

More Details

Mesoscale to plant-scale models of nuclear waste reprocessing

Rao, Rekha R.; Pawlowski, Roger P.; Brotherton, Christopher M.; Cipiti, Benjamin B.; Domino, Stefan P.; Jove Colon, Carlos F.; Moffat, Harry K.; Nemer, Martin N.; Noble, David R.; O'Hern, Timothy J.

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

More Details
86 Results
86 Results