Motivated by increasing interest in electrochemical devices that include highly alkaline electrolytes, we investigated two force fields for potassium hydroxide (KOH) at high concentrations in water. The “FNB” model uses the SPC/E water model, while the “FHM” model uses the TIP4P/2005 water model. Here, we also developed parameters to describe zincate ions in these solutions. The density and viscosity of KOH using the FHM model are in better agreement with experiment than the values from the FNB model. Comparing the properties of the zincate solutions to the available experimental data, we find that both force fields agree reasonably well, although the FHM parameters give a better prediction of the viscosity. The developed force field parameters can be used in future simulations of zincate/KOH solutions in combination with other species of interest.
Conceptually, single-ion polymer electrolytes (SIPE) with the anion bound to the polymer could solve major issues in Li-ion batteries, but their conductivity is too low. Experimentally, weakly interacting anionic groups have the best conductivity. To provide a theoretical basis for this result, density functional theory calculations of the optimized geometries and energies are performed for charged ligands used in SIPE. Comparison is made to neutral ligands found in dual-ion conductors, which demonstrate higher conductivity. Further, the free energy differences between adding and subtracting a ligand are small enough for the neutral ligands to have the conductivity seen experimentally. However, charged ligands have large barriers, implying that lithium transport will coincide with the slow polymer diffusion, as observed in experiments. Overall, SIPE will require additional solvent to achieve a sufficiently high conductivity. Additionally, the binding of mono- and bidentate geometries varies, providing a simple and clear reason that polarizable force fields are required for detailed interactions.
The interactions of carboxylate anions with water and cations are important for a wide variety of systems, both biological and synthetic. Here, in order to gain insight on properties of the local complexes, we apply density functional theory, to treat the complex electrostatic interactions, and investigate mixtures with varied numbers of carboxylate anions (acetate) and waters binding to monovalent cations, Li+, Na+ and K+. The optimal structure with overall lowest free energy contains two acetates and two waters such that the cation is four-fold coordinated, similar to structures found earlier for pure water or pure carboxylate ligands. More generally, the complexes with two acetates have the lowest free energy. In transitioning from the overall optimal state, exchanging an acetate for water has a lower free energy barrier than exchanging water for an acetate. In most cases, the carboxylates are monodentate and in the first solvation shell. As water is added to the system, hydrogen bonding between waters and carboxylate O atoms further stabilizes monodentate structures. These structures, which have strong electrostatic interactions that involve hydrogen bonds of varying strength, are significantly polarized, with ChelpG partial charges that vary substantially as the bonding geometry varies. Overall, these results emphasize the increasing importance of water as a component of binding sites as the number of ligands increases, thus affecting the preferential solvation of specific metal ions and clarifying Hofmeister effects. Finally, structural analysis correlated with free energy analysis supports the idea that binding to more than the preferred number of carboxylates under architectural constraints are a key to ion transport.
Here, we develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl. Moreover, the simulations predict an increase in the dielectric constant when considering the influence of ion translations in addition to the orientation of permanent dipoles.
Strongly charged polyelectrolytes (PEs) demonstrate complex solution behavior as a function of chain length, concentrations, and ionic strength. The viscosity behavior is important to understand and is a core quantity for many applications, but aspects remain a challenge. Molecular dynamics simulations using implicit solvent coarse-grained (CG) models successfully reproduce structure, but are often inappropriate for calculating viscosities. To address the need for CG models which reproduce viscoelastic properties of one of the most studied PEs, sodium polystyrene sulfonate (NaPSS), we report our recent efforts in using Bayesian optimization to develop CG models of NaPSS which capture both polymer structure and dynamics in aqueous solutions with explicit solvent. We demonstrate that our explicit solvent CG NaPSS model with the ML-BOP water model [Chan et al. Nat Commun 10, 379 (2019)] quantitatively reproduces NaPSS chain statistics and solution structure. The new explicit solvent CG model is benchmarked against diffusivities from atomistic simulations and experimental specific viscosities for short chains. We also show that our Bayesian-optimized CG model is transferable to larger chain lengths across a range of concentrations. Overall, this work provides a machine-learned model to probe the structural, dynamic, and rheological properties of polyelectrolytes such as NaPSS and aids in the design of novel, strongly charged polymers with tunable structural and viscoelastic properties
Here, we perform all-atom molecular dynamics simulations of lithium triflate in 1,2-dimethoxyethane using six different literature force fields. This system is representative of many experimental studies of lithium salts in solvents and polymers. We show that multiple historically common force fields for lithium ions give qualitatively incorrect results when compared with those from experiments and quantum chemistry calculations. We illustrate the importance of correctly selecting force field parameters and give recommendations on the force field choice for lithium electrolyte applications.
Almost all studies of specific ion binding by carboxylates (-COO−) have considered only a single cation, but clustering of ions and ligands is a common phenomenon. We apply density functional theory to investigate how variations in the number of acetate ligands in binding to two monovalent cations affects ion binding preferences. We study a series of monovalent (Li+, Na+, K+, Cs+) ions relevant to experimental work on many topics, including ion channels, battery storage, water purification and solar cells. We find that the preferred optimal structure has 3 acetates except for Cs+, which has 2 acetates. The optimal coordination of the cation by the carboxylate O atoms is 4 for both Na+ and K+, and 3 for Li+ and Cs+. There is a 4-fold coordination minimum just a few kcal mol−1 higher than the optimal 3-fold structure for Li+. For two cations, multiple minima occur in the vicinity of the lowest free energy state. We find that, for Li, Na and K, the preferred optimal structure with two cations is favored over a mixture of single cation complexes, providing a basis for understanding ionic cluster formation that is relevant for engineering proteins and other materials for rapid, selective ion transport.
The principle of least action is the cornerstone of classical mechanics, theory of relativity, quantum mechanics, and thermodynamics. Here, we describe how a neural network (NN) learns to find the trajectory for a Lennard-Jones (LJ) system that maintains balance in minimizing the Onsager-Machlup (OM) action and maintaining the energy conservation. The phase-space trajectory thus calculated is in excellent agreement with the corresponding results from the "ground-truth" molecular dynamics (MD) simulation. Furthermore, we show that the NN can easily find structural transformation pathways for LJ clusters, for example, the basin-hopping transformation of an LJ38from an incomplete Mackay icosahedron to a truncated face-centered cubic octahedron. Unlike MD, the NN computes atomic trajectories over the entire temporal domain in one fell swoop, and the NN time step is a factor of 20 larger than the MD time step. The NN approach to OM action is quite general and can be adapted to model morphometrics in a variety of applications.
For strongly charged polyelectrolytes in salt-free solutions, we use molecular dynamics simulations of a coarse-grained bead-spring model to calculate overlap concentrations c∗ and chain structure for polymers containing N = 10 to 1600 monomers. Over much of this range, we find that the end-to-end distance R∗ at c∗ increases faster than linearly with increasing N, as chains at the overlap concentration approach strongly extended conformations. This trend results in the overlap concentration c∗ decreasing as a stronger function of N than the classical prediction c∗ ∼N-2. This stronger dependence can be fit either by a logarithmic correction to scaling or by an apparent scaling c∗ ∼N-m, with m > 2.
This report summarizes molecular and continuum simulation studies focused on developing physics - based predictive models for the evolution of polymer molecular order during the nonlinear processing flows of additive manufacturing. Our molecular simulations of polymer elongation flows identified novel mechanisms of fluid dissipation for various polymer architectures that might be harnessed to enhance material processability. In order to predict the complex thermal and flow history of polymer realistic additive manufacturing processes, we have developed and deployed a high - performance mesh - free hydrodynamics module in Sandia's LAMMPS software. This module called RHEO – short for Reproducing Hydrodynamics and Elastic Objects – hybridizes an updated - Lagrange reproducing - kernel method for complex fluids with a bonded particle method (BPM) to capture solidification and solid objects in multiphase flows. In combination, our two methods allow rapid, multiscale characterization of the hydrodynamics and molecular evolution of polymers in realistic processing geometries.
Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials.
Designing polymers with controlled nanoscale morphologies and scalable synthesis is of great interest in the development of fluorine-free materials for proton-exchange membranes in fuel cells. This study focuses on a precision polyethylene with phenylsulfonic acid branches at every fifth carbon, p5PhSA, with a high ion-exchange capacity (4.2 mmol/g). The polymers self-assemble into hydrophilic and hydrophobic co-continuous nanoscale domains. In the hydrated state, the hydrophilic domain, composed of polar sulfonic acid moieties and water, serves as a pathway for efficient mesoscopic proton conductivity. The morphology and proton transport of p5PhSA are evaluated under hydrated conditions using in situ X-ray scattering and electrochemical impedance spectroscopy techniques. At 40 °C and 95% relative humidity, the proton conductivity of p5PhSA is 0.28 S/cm, which is four times greater than Nafion 117 under the same conditions. Atomistic molecular dynamics (MD) simulations are also used to elucidate the interplay between the structure and the water dynamics. The MD simulations show strong nanophase separation between the percolated hydrophilic and hydrophobic domains over a wide range of water contents. The percolated hydrophilic nanoscale domain facilitates the rapid proton transport in p5PhSA and demonstrates the potential of precise hydrocarbon-based polymers as processible and effective proton-exchange membranes.
Polymerization induced phase separation (PIPS) in a three component thermoset is studied using molecular dynamics simulations of a new coarse-grained thermoset model. The system includes two crosslinker molecules, which differ in their glass transition temperatures (Tg) and chain length and thus have the potential for phase separation. One crosslinker has a high Tg corresponding to a rubbery behavior, and simulations were performed for a short length (4 beads) and a long length (33 beads). The resin and other crosslinker have low Tg. A coarse-grained model is developed with these features and with interaction parameters determined so that for either rubbery crosslinker length, the system is in the liquid state at the cure temperature. For sufficiently slow reaction rates, the long rubbery molecule exhibits PIPS into a bicontinuous array of nanoscale domains, but the short one does not, reproducing recent experimental results. The simulations demonstrate that the reaction rates must be slow enough to allow diffusion to yield phase separation. Particularly, the reaction rate corresponding to the secondary amine must be very slow, else the structure of crosslinked clusters and the substantially increased diffusion time will prevent PIPS.
Umbrella sampling, coupled with a weighted histogram analysis method (US-WHAM), can be used to construct potentials of mean force (PMFs) for studying the complex ion permeation pathways of membrane transport proteins. Despite the widespread use of US-WHAM, obtaining a physically meaningful PMF can be challenging. Here, we provide a protocol to resolve that issue. Then, we apply that protocol to compute a meaningful PMF for sodium ion permeation through channelrhodopsin chimera, C1C2, for illustration.
Dynamic instability of microtubules is characterized by stochastically alternating phases of growth and shrinkage and is hypothesized to be controlled by the conformation and nucleotide state of tubulin dimers within the microtubule lattice. Specifically, conformation changes (compression) in the tubulin dimer following the hydrolysis of GTP have been suggested to generate stress and drive depolymerization. In the present study, molecular dynamics simulations were used in tandem with in vitro experiments to investigate changes in depolymerization based on the presence of islands of uncompressed (GMPCPP) dimers in the microtubule lattice. Both methods revealed an exponential decay in the kinetic rate of depolymerization corresponding to the relative level of uncompressed (GMPCPP) dimers, beginning at approximately 20% incorporation. This slowdown was accompanied by a distinct morphological change from unpeeling “ram’s horns” to blunt-ended dissociation at the microtubule end. Collectively these data demonstrated that islands of uncompressed dimers can alter the mechanism and kinetics of depolymerization in a manner consistent with promoting rescue events.
We describe a set of precise single-ion conducting polymers that form self-assembled percolated ionic aggregates in glassy polymer matrices and have decoupled transport of metal cations. These precise single-ion conductors (SICs), synthesized by a scalable ring-opening metathesis polymerization, consist of a polyethylene backbone with a sulfonated phenyl group pendant on every fifth carbon and are fully neutralized by a counterion X+ (Li+, Na+, or Cs+). Experimental X-ray scattering measurements and fully atomistic molecular dynamics (MD) simulations are in good agreement. The MD simulations show that the ionic groups nanophase separate from the polymer backbone to form percolating ionic aggregates. Using graph theory, we find that within the Li+- and Na+-neutralized polymers the percolated aggregates exhibit planar and ribbon-like configurations at intermediate length scales, while the percolated aggregates within the Cs+-neutralized polymers are more isotropic. Electrical impedance spectroscopy measurements show that the ionic conductivities exhibit Arrhenius behavior, with conductivities of 10-7 to 10-6 S/cm at 180 °C. In the MD simulations, the cations move between sulfonate groups in the percolated aggregates, larger ions travel further, and overall cations travel further than the polymer backbones, indicating a decoupled ion-transport mechanism. Thus, the percolated ionic aggregates in these polymers can serve as pathways to facilitate decoupled ion motion through a glassy polymer matrix.
We calculate the solvation energy of monovalent and divalent ions in various liquids with coarse-grained molecular dynamics simulations. Our theory treats the solvent as a Stockmayer fluid, which accounts for the intrinsic dipole moment of molecules and the rotational dynamics of the dipoles. Despite the simplicity of the model, we obtain qualitative agreement between the simulations and experimental data for the free energy and enthalpy of ion solvation, which indicates that the primary contribution to the solvation energy arises mainly from the first and possibly second solvation shells near the ions. Our results suggest that a Stockmayer fluid can serve as a reference model that enables direct comparison between theory and experiment and may be invoked to scale up electrostatic interactions from the atomic to the molecular length scale.
Single-ion conducting polymers such as ionomers are promising battery electrolyte materials, but it is critical to understand how rates and mechanisms of free cation transport depend on the nanoscale aggregation of cations and polymer-bound anions. We perform coarse-grained molecular dynamics simulations of ionomer melts to understand cation mobility as a function of polymer architecture, background relative permittivity, and corresponding ionic aggregate morphology. In systems exhibiting percolated ionic aggregates, cations diffuse via stepping motions along the ionic aggregates. These diffusivities can be quantitatively predicted by calculating the lifetimes of continuous association between oppositely charged ions, which equal the time scales of the stepping (diffusive) motions. In contrast, predicting cation diffusivity for systems with isolated ionic aggregates requires another time scale. Our results suggest that to improve conductivity the Coulombic interaction strength should be strong enough to favor percolated aggregates but weak enough to facilitate ion dissociation.
Origami offers a distinct approach for designing and engineering new material structures and properties. The folding and stacking of atomically thin van der Waals (vdW) materials, for example, can lead to intriguing new physical properties including bandgap tuning, Van Hove singularity, and superconductivity. On the other hand, achieving well-controlled folding of vdW materials with high spatial precision has been extremely challenging and difficult to scale toward large areas. Here, a deterministic technique is reported to fold vdW materials at a defined position and direction using microfluidic forces. Electron beam lithography (EBL) is utilized to define the folding area, which allows precise control of the folding geometry, direction, and position beyond 100 nm resolution. Using this technique, single-atomic-layer vdW materials or their heterostructures can be folded without the need for any external supporting layers in the final folded structure. In addition, arrays of patterns can be folded across a large area using this technique and electronic devices that can reconfigure device functionalities through folding are also demonstrated. Such scalable formation of folded vdW material structures with high precision can lead to the creation of new atomic-scale materials and superlattices as well as opening the door to realizing foldable and reconfigurable electronics.
Stevens, Mark J.; Innes-Gold, Sarah N.; Pincus, Philip A.; Saleh, Omar A.
The configuration of charged polymers is heavily dependent on interactions with surrounding salt ions, typically manifesting as a sensitivity to the bulk ionic strength. Here, we use single-molecule mechanical measurements to show that a charged polysaccharide, hyaluronic acid, shows a surprising regime of insensitivity to ionic strength in the presence of trivalent ions. Using simulations and theory, we propose that this is caused by the formation of a "jacket" of ions, tightly associated with the polymer, whose charge (and thus effect on configuration) is robust against changes in solution composition.
Microtubules are stiff biopolymers that self-assemble via the addition of GTP-tubulin (αβ-dimer bound to GTP), but hydrolysis of GTP- to GDP-tubulin within the tubules destabilizes them toward catastrophically-fast depolymerization. The molecular mechanisms and features of the individual tubulin proteins that drive such behavior are still not well-understood. Using molecular dynamics simulations of whole microtubules built from a coarse-grained model of tubulin, we demonstrate how conformational shape changes (i.e., deformations) in subunits that frustrate tubulin-tubulin binding within microtubules drive depolymerization of stiff tubules via unpeeling "ram's horns" consistent with experiments. We calculate the sensitivity of these behaviors to the length scales and strengths of binding attractions and varying degrees of binding frustration driven by subunit shape change, and demonstrate that the dynamic instability and mechanical properties of microtubules can be produced based on either balanced or imbalanced strengths of lateral and vertical binding attractions. Finally, we show how catastrophic depolymerization can be interrupted by small regions of the microtubule containing undeformed dimers, corresponding to incomplete lattice hydrolysis. The results demonstrate a mechanism by which microtubule rescue can occur.
Very large molecular dynamics simulations with open ends between two solid adherends have been performed treating tensile deformation of coarse-grained, highly crosslinked polymer networks modeling epoxy systems. The open boundary and the presence of corners dramatically alter the fracture behavior. In contrast to systems with periodic boundaries, the failure strain decreases with increasing system size until a critical size is reached. This decrease greatly reduces the difference in the crack initiation strains between simulation and experiment. In the open geometry, the sides of the polymer network contract inward forming wedge shaped corners. The stress and strain are concentrated in the corners where the shear component is present and large. The nonuniformity of the strain results in accumulation of bond breaking in the corners and crack initiation there. Moreover, the corner strain is system size dependent, which results in a system size dependence of the failure strain.
In this study, very large molecular dynamics simulations with open ends between two solid adherends have been performed treating tensile deformation of coarse-grained, highly crosslinked polymer networks modeling epoxy systems. The open boundary and the presence of corners dramatically alter the fracture behavior. In contrast to systems with periodic boundaries, the failure strain decreases with increasing system size until a critical size is reached. This decrease greatly reduces the difference in the crack initiation strains between simulation and experiment. In the open geometry, the sides of the polymer network contract inward forming wedge shaped corners. The stress and strain are concentrated in the corners where the shear component is present and large. The nonuniformity of the strain results in accumulation of bond breaking in the corners and crack initiation there. Lastly, t the corner strain is system size dependent, which results in a system size dependence of the failure strain.
We present simulations of the force-extension curves of strong polyelectrolytes with varying intrinsic stiffness as well as specifically treating hyaluronic acid, a polyelectrolyte of intermediate stiffness. Whereas fully flexible polyelectrolytes show a high-force regime where extension increases nearly logarithmically with force, we find that the addition of even a small amount of stiffness alters the short-range structure and removes this logarithmic elastic regime. This further confirms that the logarithmic regime is a consequence of the short-ranged "wrinkles" in the flexible chain. As the stiffness increases, the force-extension curves tend toward and reach the wormlike chain behavior. Using the screened Coulomb potential and a simple bead-spring model, the simulations are able to reproduce the hyaluronic acid experimental force-extension curves for salt concentrations ranging from 1 to 500 mM. Furthermore, the simulation data can be scaled to a universal curve like the experimental data. The scaling analysis is consistent with the interpretation that, in the low-salt limit, the hyaluronic acid chain stiffness scales with salt with an exponent of -0.7, rather than either of the two main theoretical predictions of -0.5 and -1. Furthermore, given the conditions of the simulation, we conclude that this exponent value is not due to counterion condensation effects, as had previously been suggested.
Stevens, Mark J.; Trigg, Edward B.; Gaines, Taylor W.; Marechal, Manuel; Moed, Demi E.; Rannou, Patrice; Wagener, Kenneth B.; Winey, Karen I.
Recent advances in polymer synthesis have allowed remarkable control over chain microstructure and conformation. Capitalizing on such developments, here we create well-controlled chain folding in sulfonated polyethylene, leading to highly uniform hydrated acid layers of subnanometre thickness with high proton conductivity. The linear polyethylene contains sulfonic acid groups pendant to precisely every twenty-first carbon atom that induce tight chain folds to form the hydrated layers, while the methylene segments crystallize. The proton conductivity is on par with Nafion 117, the benchmark for fuel cell membranes. We demonstrate that well-controlled hairpin chain folding can be utilized for proton conductivity within a crystalline polymer structure, and we project that this structure could be adapted for ion transport. This layered polyethylene-based structure is an innovative and versatile design paradigm for functional polymer membranes, opening doors to efficient and selective transport of other ions and small molecules on appropriate selection of functional groups.
Microtubules exhibit a dynamic instability between growth and catastrophic depolymerization. GTP-tubulin (αβ-dimer bound to GTP) self-assembles, but dephosphorylation of GTP- to GDP-tubulin within the tubule results in destabilization. While the mechanical basis for destabilization is not fully understood, one hypothesis is that dephosphorylation causes tubulin to change shape, frustrating bonds and generating stress. To test this idea, we perform molecular dynamics simulations of microtubules built from coarse-grained models of tubulin, incorporating a small compression of α-subunits associated with dephosphorylation in experiments. We find that this shape change induces depolymerization of otherwise stable systems via unpeeling "ram's horns" characteristic of microtubules. Depolymerization can be averted by caps with uncompressed α-subunits, i.e., GTP-rich end regions. Thus, the shape change is sufficient to yield microtubule behavior.
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.
The directed, head-to-tail self-assembly of microtubule filaments may be generalized in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. Here we show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Enzymes that degrade specific small molecules could save lives by neutralizing threats from chemical agents in the blood or environment, or by starving pathogenic cells, but promiscuous interactions with other molecules typically limit their effectiveness by blocking the enzyme active site. An obvious solution would be to re-engineer the enzyme to enhance catalytic fidelity, but lack of understanding about how enzymes discriminate between molecules remains a formidable challenge to this approach. Our recent work in collaboration with the University of Texas (UT) suggested a new approach and a model system for understanding enzyme specificity. Asparaginase enzymes catalyze degradation of asparagine, which forms the basis of a medical treatment. Competition by the abundant and chemically similar molecule, glutamine, interferes with asparagine decomposition, thus hindering enzyme efficacy. Asparaginase is advantageous as a model degradation enzyme because variants that demonstrate different binding affinities and catalytic rates can be compared. Here, we leveraged Sandia and the University of Maryland's strengths in molecular simulation, and UT experimental expertise in asparaginase modification and functional assays, to understand asparaginase specificity. Our results advanced a new hypothesis about asparaginase catalytic mechanism that explains for the first time why proximity between the substrate's alpha-carboxyl and carboxamide is absolutely required for catalysis. Based on those insights, we developed the first mutant (Q59L) asparaginase from E. coli that lacks activity toward glutamine. We used that mutant to show that glutaminase activity is required to kill cancer cells that have asparagine synthetase enzymes (ASNS), but not ASNS-negative cancer cells.
Specific ion binding by carboxylates (-COO-) is a broadly important topic because -COO- is one of the most common functional groups coordinated to metal ions in metalloproteins and synthetic polymers. We apply quantum chemical methods and the quasi-chemical free-energy theory to investigate how variations in the number of -COO- ligands in a binding site determine ion-binding preferences. We study a series of monovalent (Li+, Na+, K+, Cs+) and divalent (Zn2+, Ca2+) ions relevant to experimental work on ion channels and ionomers. Of two competing hypotheses, our results support the ligand field strength hypothesis and follow the reverse Hofmeister series for ion solvation and ion transfer from aqueous solution to binding sites with the preferred number of ligands. New insight arises from the finding that ion-binding sequences can be manipulated and even reversed just by constraining the number of carboxylate ligands in the binding sites. Our results help clarify the discrepancy in ion association between molecular ligands in aqueous solutions and ionomers, and their chemical analogues in ion-channel binding sites.
The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. The methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.
We perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understood by comparison with relevant time scales in the systems, obtained from independent calculations.
We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removed the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.
Negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP-NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depth and location of the minimum in the interaction depend strongly on the NPs' charge. For certain parameters, the depth of the attractive well can reach 8-10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP-NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.
Negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP-NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depth and location of the minimum in the interaction depend strongly on the NPs' charge. For certain parameters, the depth of the attractive well can reach 8-10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP-NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.
A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil-globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations.
The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.
Triblock amphiphilic molecules composed of three distinct segments provide a large parameter space to obtain self-assembled structures beyond what is achievable with conventional amphiphiles. To obtain a molecular understanding of the thermodynamics of self-assembly, we develop a coarse-grained triblock polymer model and apply self-consistent field theory to investigate the packing mechanism into layer structures. By tuning the structural and interaction asymmetry, we are able to obtain bilayers and monolayers, where the latter may additionally be mixed (symmetric) or segregated (asymmetric). Of particular interest for a variety of applications are the asymmetric monolayers, where segregation of end blocks to opposite surfaces is expected to have important implications for the development of functional nanotubes and vesicles with distinct surface chemistries.
For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. In addition, one intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are one of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.
We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.
Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. In these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). The modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average distance between branches of type 2 or 3 aggregates. This direct comparison of X-ray scattering data to the atomistic MD simulations is a substantive step toward providing a comprehensive, predictive model for ionomer morphology, gives substantial support for this atomistic MD model, and provides new credibility to the presence of stringy, branched, and percolated ionic aggregates in precise ionomer melts.
Stevens, Mark J.; Cao, Zhen; Carrillo, Jan M.Y.; Dobrynin, Andrey V.
We use a combination of the molecular dynamics simulations and scaling analysis to study interactions between gel-like nanoparticles and substrates covered with rectangular shape posts. Our simulations have shown that nanoparticles in contact with substrate undergo a first-order transition between the Cassie-Baxter and Wenzel states, which depends on nanoparticle shear modulus, the strength of nanoparticle-substrate interactions, height of the substrate posts, and nanoparticle size, Rp. There is a range of system parameters where these two states coexist such that the average indentation δ produced by substrate posts changes with nanoparticle shear modulus, Gp. We have developed a scaling model that describes deformation of nanoparticle in contact with patterned substrate. In the framework of this model, the effect of the patterned substrate can be taken into account by introducing an effective work of adhesion, Weff, which describes the first-order transition between Wenzel and Cassie-Baxter states. There are two different shape deformation regimes for nanoparticles with shear modulus Gp and surface tension γp. The shape of small nanoparticles with size Rp < γp3/2Gp-1Weff-1/2 is controlled by capillary forces, while deformation of large nanoparticles, Rp > γp3/2Gp-1Weff-1/2, is determined by nanoparticle elastic and contact free energies. The model predictions are in good agreement with simulation results.
Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.
This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.
A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.
The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
There are many important biological processes involving lipid bilayers on times scales beyond that accessible by atomistic simulations. We have developed coarse-grained, bead-spring models of lipid molecules to treat membrane fusion, domain formation and the general physical characteristics of lipid bilayers. A key aspect of these coarse-grained models is that the liquid nature of a bilayer is explicitly present in the simulations; the lipids diffuse far beyond their neighbors in contrast to atomistic simulations. With these models self-assembly into a bilayer starting from a random configuration of lipids and solvent is readily simulated. We have performed extensive simulations to characterize these lipid models in single component lipid bilayers. For a variety of tail lengths, the area per lipid as a function of temperature has been calculated; the liquid-gel transition has been characterized. Models have been developed for a variety of lipids including double bonds in the lipid tails. Simulation results will be presented for fusion and domain formation.
Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.
Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attractions depend upon concentrations of simple and multivalent salts. We find that with increasing multivalent salt, the stable configuration of two rods evolves from isolated rods to aggregated perpendicular rods to aggregated parallel rods; at sufficiently high concentration, additional multivalent salt reduces the attraction. Monovalent salt enhances the attraction near the onset of aggregation and reduces it at a higher concentration of multivalent salt.
The effect of cross-linker functionality and interfacial bond density on the fracture behavior of highly cross-linked polymer networks bonded to a solid surface is studied using large-scale molecular dynamics simulations. Three different cross-linker functionalities (f = 3, 4, and 6) are considered. The polymer networks are created between two solid surfaces with the number of bonds to the surfaces varying from zero to full bonding to the network. Stress?strain curves are determined for each system from tensile pull and shear deformations. At full interfacial bond density the failure mode is cohesive. The cohesive failure stress is almost identical for shear and tensile modes. The simulations directly show that cohesive failure occurs when the number of interfacial bonds is greater than in the bulk. Decreasing the number of interfacial bonds results in cohesive to adhesive transition consistent with recent experimental results. The correspondence between the stress?strain curves at different f and the sequence of molecular deformations is obtained. The failure stress decreases with smaller f while failure strain increases with smaller f.
This LDRD project has involved the development and application of Sandia's massively parallel materials modeling software to several significant biophysical systems. They have been successful in applying the molecular dynamics code LAMMPS to modeling DNA, unstructured proteins, and lipid membranes. They have developed and applied a coupled transport-molecular theory code (Tramonto) to study ion channel proteins with gramicidin A as a prototype. they have used the Towhee configurational bias Monte-Carlo code to perform rigorous tests of biological force fields. they have also applied the MP-Sala reacting-diffusion code to model cellular systems. Electroporation of cell membranes has also been studied, and detailed quantum mechanical studies of ion solvation have been performed. In addition, new molecular theory algorithms have been developed (in FasTram) that may ultimately make protein solvation calculations feasible on workstations. Finally, they have begun implementation of a combined molecular theory and configurational bias Monte-Carlo code. They note that this LDRD has provided a basis for several new internal (e.g. several new LDRD) and external (e.g. 4 NIH proposals and a DOE/Genomes to Life) proposals.
For highly cross-linked polymer networks bonded to a solid surface, the effect of interfacial bond density and system size on interfacial fracture is studied using molecular dynamics simulations. Results for tensile and shear mode simulations are given. The correspondence between the stress-strain curve and the sequence of molecular deformations is obtained. The failure strain for a fully bonded surface is equal to the strain necessary to make taut the average of the minimal paths through the network from a bonded site on the bottom solid surface to a bonded site on the top surface. At fractional interfacial bond densities, cavities form above the nonbonded surface, yielding an inhomogeneous strain profile and a smaller failure strain. The failure strain and stress are linearly proportional to the number of bonds at the interface except in the tensile mode when number of bonds is so few that van der Waals interactions dominate. The failure mode is successfully constructed to be interracial by limiting the interfacial bond density to be less than the bulk bond density.
Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.
The fracture of highly-crosslinked networks is investigated by molecular dynamics simulations. The network is modeled as a bead-spring polymer network between two solid surfaces. The network is dynamically formed by crosslinking an equilibrated liquid mixture. Tensile pull fracture is simulated as a function of the number of interracial bonds. The sequence of molecular structural deformations that lead to failure are determined, and the connectivity is found to strongly control the stress-strain response and failure modes. The failure strain is related to the minimal paths in the network that connect the two solid surfaces. The failure stress is a fraction of the ideal stress required to fracture all the interracial bonds, and is linearly proportional to the number of interracial bonds. By allowing only a single bond between a crosslinker and the surface, interracial failure always occurs. Allowing up to half of the crosslinker's bonds to occur with the surface, cohesive failure can occur.
The failure of thermosetting polymer adhesives is an important problem which particularly lacks understanding from the molecular viewpoint. While linear elastic fracture mechanics works well for such polymers far from the crack tip, the method breaks down near the crack tip where large plastic deformation occurs and the molecular details become important [1]. Results of molecular dynamics simulations of highly crosslinked polymer networks bonded to a solid surface are presented here. Epoxies are used as the guide for modeling. The focus of the simulations is the network connectivity and the interfacial strength. In a random network, the bond stress is expected to vary, and the most stressed bonds will break first [2]. Crack initiation should occur where a cluster of highly constrained bonds exists. There is no reason to expect crack initiation to occur at the interface. The results to be presented show that the solid surface limits the interfacial bonding resulting in stressed interfacial bonds and interfacial fracture. The bonds in highly-crosslinked random networks do not become stressed as expected. The sequence of molecular structural deformations that lead to failure has been determined and found to be strongly dependent upon the network connectivity. The structure of these networks and its influence on the stress-strain behavior will be discussed in general. A set of ideal, ordered networks have been constructed to manipulate the deformation sequence to achieve different fracture modes (i.e. cohesive vs. adhesive).
This report focuses on the relationship between the fundamental interactions acting across an interface and macroscopic engineering observable such as fracture toughness or fracture stress. The work encompasses experiment, theory, and simulation. The model experimental system is epoxy on polished silicon. The interfacial interactions between the substrate and the adhesive are varied continuously using self-assembling monolayer. Fracture is studied in two specimen geometries: a napkin-ring torsion geometry and a double cantilevered beam specimen. Analysis and modeling involves molecular dynamics simulations and continuum mechanics calculations. Further insight is gained from analysis of measurements in the literature of direct force measurements for various fundamental interactions. In the napkin-ring test, the data indicate a nonlinear relationship between interface strength and fracture stress. In particular, there is an abrupt transition in fracture stress which corresponds to an adhesive-to-cohesive transition. Such nonlinearity is not present in the MD simulations on the tens-of-nanometer scale, which suggests that the nonlinearity comes from bulk material deformation occurring on much larger length scales. We postulate that the transition occurs when the interface strength becomes comparable to the yield stress of the material. This postulate is supported by variation observed in the fracture stress curve with test temperature. Detailed modeling of the stress within the sample has not yet been attempted. In the DCB test, the relationship between interface strength and fracture toughness is also nonlinear, but the fracture mechanisms are quite different. The fracture does not transition from adhesive to cohesive, but remains adhesive over the entire range of interface strength. This specimen is modeled quantitatively by combining (i) continuum calculations relating fracture toughness to the stress at 90 {angstrom} from the crack tip, and (ii) a relationship from molecular simulations between fracture stress on a {approx} 90 {angstrom} scale and the fraction of surface sites which chemically bond. The resulting relationship between G{sub c} and fraction of bonding sites is then compared to the experimental data. This first order model captures the nonlinearity in the experimentally-determined relationship. A much more extensive comparison is needed (calculations extending to higher G{sub c} values, experimental data extending to lower G{sub c} values) to guide further model development.
By studying model polymeric networks which only differ in their connectivity, the connectivity is shown to strongly control the stress-strain response and failure modes. The sequence of molecular structural deformations that lead to failure are strongly dependent upon the network connectivity. A set of ideal, ordered networks are constructed to manipulate the deformation sequence to achieve a variety of adhesive qualities. Compared to random, dynamically formed networks, these ideal networks can be made to have either much larger or smaller failure stresses and strains. Unlike the random networks, the failure stress of an ideal network can be made close to the ideal stress equal to breaking all bonds to the substrate. By varying the number of bonds to the surface, the failure mode can be controlled to be either adhesive or cohesive.
This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model.