Publications

31 Results
Skip to search filters

Compound Semiconductor Integrated Photonics for Avionics

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Cajas, Florante G.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.; Chow, Weng W.; Lentine, Anthony L.; Nelson, Jeffrey S.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Sanchez, Carlos A.; Pipkin, Jennifer R.; Girard, Gerald R.; Nielson, Greg N.; Cruz-Campa, Jose L.; Okandan, Murat O.

Abstract not provided.

Photonic integration at sandia national laboratories

Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Overberg, Mark E.; Peake, Gregory M.; Cajas, Florante G.

This talk will discuss recent work on photonic integration for applications in optical signal processing, digital logic, and fundamental device research with an emphasis on InP-based photonic integrated circuit technology. © 2015 OSA.

More Details

Cascaded double ring resonator filter with integrated SOAs

Optics InfoBase Conference Papers

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles; Torres, David; Cajas, Florante; Kalivoda, James

We present a filter consisting of cascaded ring resonators with integrated SOAs. The filter demonstrates an extinction ratio >30 dB, a free spectral range of 56 GHz and a FWHM bandwidth of 3 GHz. © 2010 Optical Society of America.

More Details

Mutual injection locking of monolithically integrated coupled-cavity DBR lasers

IEEE Photonics Technology Letters

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles A.; Chow, Weng W.; Yang, Zhenshan Y.; Torres, David; Cajas, Florante

We present a photonic integrated circuit (PIC) composed of two strongly coupled distributed Bragg reflector (DBR) lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz. Mutual injection-locking and external injection-locking operation are compared. © 2011 IEEE.

More Details

InP substrate evaluation by MOVPE growth of lattice matched epitaxial layers

Journal of Crystal Growth

Cederberg, Jeffrey G.; Overberg, Mark E.

InP substrates form the starting point for a wide variety of semiconductor devices. The surface morphology produced during epitaxy depends critically on the starting substrate. We evaluated (1 0 0)-oriented InP wafers from three different vendors by growing thick (5 μm) lattice-matched epilayers of InP, GaInAs, and AlInAs. We assessed the surfaces with differential interference contrast microscopy and atomic force microscopy. Wafers with near singular (1 0 0) orientations produced inferior surfaces in general. Vicinal substrates with small misorientations improved the epitaxial surface for InP dramatically, reducing the density of macroscopic defects while maintaining a low RMS roughness. GaInAs and AlInAs epitaxy step-bunched forming undulations along the miscut direction. Sulfur-doped wafers were considered for singular (1 0 0) and for 0.2° misorientation toward (1 1 0). We found that mound defects observed for InP and GaInAs layers on iron-doped singular wafers were absent for singular sulfur-doped wafers. These observations support the conclusion that dislocation termination at the surface and expansion of the step spiral lead to the macroscopic defects observed. © 2010 Elsevier B.V.

More Details

Cascaded double ring resonator filter with integrated SOAs

2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OFC/NFOEC 2011

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles A.; Torres, David; Cajas, Florante; Kalivoda, James

We present a filter consisting of cascaded ring resonators with integrated SOAs. The filter demonstrates an extinction ratio ≥30 dB, a free spectral range of 56 GHz and a FWHM bandwidth of 3 GHz. © 2011 Optical Society of America.

More Details

Optical logic gates using interconnected photodiodes and electro-absorption modulators

Optics InfoBase Conference Papers

Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna; Overberg, Mark E.; Peake, Gregory M.; Alford, Charles; Torres, David; Cajas, Florante; Sullivan, Charles T.

We demonstrate an optical gate architecture with optical isolation between input and output using interconnected PD-EAMs to perform AND and NOT functions. Waveforms for 10 Gbps AND and 40 Gbps NOT gates are shown. © 2010 Optical Society of America.

More Details

Enhanced frequency response in monolithically integrated coupled cavity lasers and electro-absorption modulator

Vawter, Gregory A.; Wendt, J.R.; Alford, Charles A.; Skogen, Erik J.; Overberg, Mark E.; Peake, Gregory M.; Chow, Weng W.; Yang, Zhenshan Y.

We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.

More Details

Injection-locked composite lasers for mm-wave modulation : LDRD 117819 final report

Vawter, Gregory A.; Skogen, Erik J.; Chow, Weng W.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.

This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.

More Details

High-speed reflective S-SEEDs for photonic logic circuits

2009 International Conference on Photonics in Switching, PS '09

Keeler, Gordon A.; Serkland, Darwin K.; Overberg, Mark E.; Geib, K.M.; Gill, D.D.; Mukherjee, Sayan M.; Hsu, Alan Y.; Clevenger, Jascinda C.; Baiocchi, D.; Sweatt, W.C.

We demonstrate the operation of low-power reflective S-SEEDs with 6-ps switching times at a 2-Volt bias. Efficient refractive micro-optics are used to optically interconnect multiple S-SEED gates. The technology platform is expected to enable dense photonic logic circuits for high-speed telecommunications-related applications. © 2009 IEEE.

More Details

Growth, fabrication, and characterization of high-speed 1550-nm S-SEEDs for all-optical logic

ECS Transactions

Keeler, Gordon A.; Serkland, Darwin K.; Overberg, Mark E.; Klem, John F.; Geib, K.M.; Clevenger, Jascinda C.; Hsu, Alan Y.; Hadley, G.R.

We describe recent advances in the development of 1550-nm symmetric self-electrooptic effect devices (S-SEEDs). S-SEEDs are semiconductor optoelectronic devices used to implement ultrafast all-optical logic functions: for optical fiber communication applications. In this paper, basic S-SEED operation is described, followed by a detailed explanation of the optimization techniques used to improve DC and high-speed performance in these long wavelength devices. Both epitaxial strain and quantum well design are shown to be important for S-SEEDs grown in the InAlGaAs quaternary material system. The device fabrication approach is outlined, and DC electrical and optical performance is discussed. Finally, we describe the high-speed optoelectronic measurements used to determine S-SEED switching characteristics. The devices described herein are the first known S-SEEDs to operate at telecommunications- compatible wavelengths and demonstrate record switching speeds with rail-to-rail switching rates faster than 6 picoseconds. © The Electrochemical Society.

More Details

Electronic/photonic interfaces for ultrafast data processing

Keeler, Gordon A.; Serkland, Darwin K.; Hsu, Alan Y.; Geib, K.M.; Overberg, Mark E.

This report summarizes a 3-month program that explored the potential areas of impact for electronic/photonic integration technologies, as applied to next-generation data processing systems operating within 100+ Gb/s optical networks. The study included a technology review that targeted three key functions of data processing systems, namely receive/demultiplexing/clock recovery, data processing, and transmit/multiplexing. Various technical approaches were described and evaluated. In addition, we initiated the development of high-speed photodetectors and hybrid integration processes, two key elements of an ultrafast data processor. Relevant experimental results are described herein.

More Details
31 Results
31 Results