The objective of this project was to eliminate and/or render bulk agent unusable by a threat entity via neutralization and/or polymerization of the bulk agent using minimal quantities of additives. We proposed the in situ neutralization and polymerization of bulk chemical agents (CAs) by performing reactions in the existing CA storage container via wet chemical approaches using minimal quantities of chemical based materials. This approach does not require sophisticated equipment, fuel to power generators, electricity to power equipment, or large quantities of decontaminating materials. By utilizing the CA storage container as the batch reactor, the amount of logistical resources can be significantly reduced. Fewer personnel are required since no sophisticated equipment needs to be set up, configured, or operated. Employing the CA storage container as the batch reactor enables the capability to add materials to multiple containers in a short period of time as opposed to processing one container at a time for typical batch reactor approaches. In scenarios where a quick response is required, the material can be added to all the CA containers and left to react on its own without intervention. Any attempt to filter the CA plus material solution will increase the rate of reaction due to increased agitation of the solution.
Recently, lithium nitride (Li3N) has been proposed as a chemical warfare agent (CWA) neutralization reagent for its ability to produce nucleophilic ammonia molecules and hydroxide ions in aqueous solution. Quantum chemical calculations can provide insight into the Li3N neutralization process that has been studied experimentally. Here, we calculate reaction-free energies associated with the Li3N-based neutralization of the CWA VX using quantum chemical density functional theory and ab initio methods. We find that alkaline hydrolysis is more favorable to either ammonolysis or neutral hydrolysis for initial P-S and P-O bond cleavages. Reaction-free energies of subsequent reactions are calculated to determine the full reaction pathway. Notably, products predicted from favorable reactions have been identified in previous experiments.
This report gives introductory guidance on the level of effort required to create a data warehouse for mining data. Numerous tutorials have been provided to demonstrate the process of downloading raw data, processing the raw data, and importing the data into a PostgreSQL database. Additional information and tutorial has been provided on setting up a Hadoop cluster for storing vasts amounts of data. This report has been generated as a deliverable for a New Mexico Small Business Assistance (NMSBA) project.
The in-situ hydrolysis and subsequent condensation reaction of the chemical agent simulant diethyl chlorophosphate (DECP) was characterized by high-resolution 31P NMR spectroscopy following the addition of water in sub-equimolar concentrations. The identification and quantification of the multiple pyrophosphate and larger polyphosphate chemical species formed through a series of self-condensation reactions are reported. The DECP hydrolysis kinetics and distribution of breakdown species was strongly influenced by the water concentration and reaction temperature.
The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.