Publications

28 Results
Skip to search filters

Mesoscale Effects of Composition and Calendering in Lithium-Ion Battery Composite Electrodes

Journal of Electrochemical Energy Conversion and Storage

Trembacki, Bradley T.; Noble, David R.; Ferraro, Mark E.; Roberts, Scott A.

Macrohomogeneous battery models are widely used to predict battery performance, necessarily relying on effective electrode properties, such as specific surface area, tortuosity, and electrical conductivity. While these properties are typically estimated using ideal effective medium theories, in practice they exhibit highly non-ideal behaviors arising from their complex mesostructures. In this paper, we computationally reconstruct electrodes from X-ray computed tomography of 16 nickel-manganese-cobalt-oxide electrodes, manufactured using various material recipes and calendering pressures. Due to imaging limitations, a synthetic conductive binder domain (CBD) consisting of binder and conductive carbon is added to the reconstructions using a binder bridge algorithm. Reconstructed particle surface areas are significantly smaller than standard approximations predicted, as the majority of the particle surface area is covered by CBD, affecting electrochemical reaction availability. Finite element effective property simulations are performed on 320 large electrode subdomains to analyze trends and heterogeneity across the electrodes. Significant anisotropy of up to 27% in tortuosity and 47% in effective conductivity is observed. Electrical conductivity increases up to 7.5Ă— with particle lithiation. We compare the results to traditional Bruggeman approximations and offer improved alternatives for use in cellscale modeling, with Bruggeman exponents ranging from 1.62 to 1.72 rather than the theoretical value of 1.5. We also conclude that the CBD phase alone, rather than the entire solid phase, should be used to estimate effective electronic conductivity. This study provides insight into mesoscale transport phenomena and results in improved effective property approximations founded on realistic, image-based morphologies.

More Details

Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes

Journal of the Electrochemical Society

Ferraro, Mark E.; Trembacki, Bradley T.; Brunini, Victor B.; Noble, David R.; Roberts, Scott A.

Battery electrodes are composed of polydisperse particles and a porous, composite binder domain. These materials are arranged into a complex mesostructure whose morphology impacts both electrochemical performance and mechanical response. We present image-based, particle-resolved, mesoscale finite element model simulations of coupled electrochemical-mechanical performance on a representative NMC electrode domain. Beyond predicting macroscale quantities such as half-cell voltage and evolving electrical conductivity, studying behaviors on a per-particle and per-surface basis enables performance and material design insights previously unachievable. Voltage losses are primarily attributable to a complex interplay between interfacial charge transfer kinetics, lithium diffusion, and, locally, electrical conductivity. Mesoscale heterogeneities arise from particle polydispersity and lead to material underutilization at high current densities. Particle-particle contacts, however, reduce heterogeneities by enabling lithium diffusion between connected particle groups. While the porous composite binder domain (CBD) may have slower ionic transport and less available area for electrochemical reactions, its high electrical conductivity makes it the preferred reaction site late in electrode discharge. Mesoscale results are favorably compared to both experimental data and macrohomogeneous models. This work enables improvements in materials design by providing a tool for optimization of particle sizes, CBD morphology, and manufacturing conditions.

More Details

Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes

Journal of the Electrochemical Society

Trembacki, Bradley T.; Mistry, Aashutosh N.; Noble, David R.; Ferraro, Mark E.; Mukherjee, Partha P.; Roberts, Scott A.

Typical lithium-ion battery electrodes are porous composites comprised of active material, conductive additives, and polymeric binder, with liquid electrolyte filling the pores. The mesoscale morphology of these constituent phases has a significant impact on both electrochemical reactions and transport across the electrode, which can ultimately limit macroscale battery performance. We reconstruct published X-ray computed tomography (XCT) data from a NMC333 cathode to study mesoscale electrode behavior on an as-manufactured electrode geometry. We present and compare two distinct models that computationally generate a composite binder domain (CBD) phase that represents both the polymeric binder and conductive additives. We compare the effect of the resulting CBD morphologies on electrochemically active area, pore phase tortuosity, and effective electrical conductivity. Both dense and nanoporous CBD are considered, and we observe that acknowledging CBD nanoporosity significantly increases effective electrical conductivity by up to an order of magnitude. Properties are compared to published measurements as well as to approximate values often used in homogenized battery-scale models. All reconstructions exhibit less than 20% of the standard electrochemically active area approximation. Order of magnitude discrepancies are observed between two popular transport simulation numerical schemes (finite element method and finite volume method), highlighting the importance of careful numerical verification.

More Details

Mesoscale effective property simulations incorporating conductive binder

Journal of the Electrochemical Society

Trembacki, Bradley T.; Noble, David R.; Brunini, Victor B.; Ferraro, Mark E.; Roberts, Scott A.

Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure, a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.

More Details
28 Results
28 Results