Whole System Trades Analysis Tool for the High Mobility Multipurpose Wheeled Vehicle
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.
Abstract not provided.
Abstract not provided.
The objective of this study is to develop a conceptual framework for establishing water leasing markets in New Mexico using the Mimbres River as a test case. Given the past and growing stress over water in New Mexico and the Mimbres River in particular, this work will develop a mechanism for the short term, efficient, temporary transfer of water from one user to another while avoiding adverse effects on any user not directly involved in the transaction (i.e., third party effects). Toward establishing a water leasing market, five basic tasks were performed, (1) a series of stakeholder meetings were conducted to identify and address concerns and interests of basin residents, (2) several gauges were installed on irrigation ditches to aid in the monitoring and management of water resources in the basin, (3) the hydrologic/market model and decision support interface was extended to include the Middle and Lower reaches of the Mimbres River, (4) experiments were conducted to aid in design of the water leasing market, and (5) a set of rules governing a water leasing market was drafted for future adoption by basin residents and the New Mexico Office of the State Engineer.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual simulation framework and historical data are based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The overall water balance ignores both transportation options and water chemistry and is broken down by county level. The resulting model contains an algal growth module, a dairy module, an oil production module, and a gas production module. A user interface is also created for controlling the adjustable parameters in the model. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil- and gas-produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.
Colloid transport through saturated media is an integral component of predicting the fate and transport of groundwater contaminants. Developing sound predictive capabilities and establishing effective methodologies for remediation relies heavily on our ability to understand the pertinent physical and chemical mechanisms. Traditionally, colloid transport through saturated media has been described by classical colloid filtration theory (CFT), which predicts an exponential decrease in colloid concentration with travel distance. Furthermore, colloid stability as determined by Derjaguin-Landau-Veney-Overbeek (DLVO) theory predicts permanent attachment of unstable particles in a primary energy minimum. However, recent studies show significant deviations from these traditional theories. Deposition in the secondary energy minimum has been suggested as a mechanism by which observed deviations can occur. This work investigates the existence of the secondary energy minimum as predicted by DLVO theory using direct force measurements obtained by Atomic Forces Microscopy. Interaction energy as a function of separation distance between a colloid and a quartz surface in electrolyte solutions of varying ionic strength are obtained. Preliminary force measurements show promise and necessary modifications to the current experimental methodology have been identified. Stringent surface cleaning procedures and the use of high-purity water for all injectant solutions is necessary for the most accurate and precise measurements. Comparisons between direct physical measurements by Atomic Forces Microscopy with theoretical calculations and existing experimental findings will allow the evaluation of the existence or absence of a secondary energy minimum.