Publications

12 Results
Skip to search filters

Corrosion of high temperature alloys in solar salt at 400, 500, and 680ÀC

Gill, David D.; LaFord, Marianne L.

Corrosion tests at 400, 500, and 680ÀC were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680ÀC, due to the relatively thin oxide scale observed at 400ÀC. At 500ÀC, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680ÀC, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

More Details

Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt

Gill, David D.; LaFord, Marianne L.

Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

More Details

A novel method for homogenous dispersion of multi-walled carbon nano-tubes onto prepreg composite materials

International SAMPE Technical Conference

Briggs, T.M.; O'Bryan, Gregory O.; LaFord, Marianne L.; Vance, Andrew L.; Skinner, J.L.; Moody, Neville R.

In this study we report a novel method of dispersing multi-walled carbon nanotubes (MWCNTs) using an electrospinning depositional process onto a conventional, uncured preimpregnated composite material. The main focus is the determination of the process parameters in order to consistently and homogeneously disperse MWCNTs onto a secondary substrate. Due to the exceptional thermal, mechanical, and electrical properties that can be exploited in CNTs, a homogenous dispersion can lead to isotropy in material properties of interest-mechanical, thermal, electrical etc. By combining these materials with structural composite materials, the true spirit of a tailored engineering material can be exploited even further to induce specific properties that are desired for a particular application. Through the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, as well as vertical scanning interferometry, the resulting electrospun fibers are imaged and correlated with process parameters.

More Details

Eddy sensors for small diameter stainless steel tubes

Morales, Alfredo M.; Andersen, Lisa E.; Skinner, J.L.; LaFord, Marianne L.; Korellis, Henry J.

The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

More Details
12 Results
12 Results