Scalable Nanoparticle Synthesis and Fabrication of a Soft Magnetic Nanocomposite
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Colloid and Interface Science
Magnetic nanoparticles are the next tool in medical diagnoses and treatment in many different biomedical applications, including magnetic hyperthermia as alternative treatment for cancer and bacterial infections, as well as the disruption of biofilms. The colloidal stability of the magnetic nanoparticles in a biological environment is crucial for efficient delivery. A surface that can be easily modifiable can also improve the delivery and imaging properties of the magnetic nanoparticle by adding targeting and imaging moieties, providing a platform for additional modification. The strategy presented in this work includes multiple nitroDOPA anchors for robust binding to the surface tied to the same polymer backbone as multiple poly(ethylene oxide) chains for steric stability. This approach provides biocompatibility and enhanced stability in fetal bovine serum (FBS) and phosphate buffer saline (PBS). As a proof of concept, these polymer-particles complexes were then modified with a near infrared dye and utilized in characterizing the integration of magnetic nanoparticles in biofilms. The work presented in this manuscript describes the synthesis and characterization of a nontoxic platform for the labeling of near IR-dyes for bioimaging.
Abstract not provided.
Chemistry of Materials
The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the "xtended LaMer mechanism" allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applying it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. We then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.
Soft Matter
Abstract not provided.
Abstract not provided.