HelioCon: US Heliostat Consortium to advance low-cost, high-performance heliostat technologies with optimized operation and maintenance (OM)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics Condensed Matter
Classical molecular dynamics (MD) simulations were performed to provide a conceptual understanding of the amorphous-crystalline interface for a candidate negative thermal expansion (NTE) material, ZrW2O8. Simulations of pressure-induced amorphization at 300 K indicate that an amorphous phase forms at pressures of 10 GPa and greater, and this phase persists when the pressure is subsequently decreased to 1 bar. However, the crystalline phase is recovered when the slightly distorted 5 GPa phase is relaxed to 1 bar. Simulations were also performed on a two-phase model consisting of the high-pressure amorphous phase in direct contact with the crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the crystalline-amorphous interface. Differences in local atomic structure at the interface are quantified from the simulation trajectories.
Abstract not provided.
This report describes the potential of a novel class of materials--a-ZrW 2 0 8 , Zr 2 WP 2 0 12 , and related compounds that contract upon amorphization as possible radionuclide waste-forms. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center- loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. In this report, we have described synthesis techniques to produce phase-pure forms of the materials, and how to fully densify those materials. Structural models for the materials were developed and validated using DFPT approaches, and radionuclide substitution was evaluated; U(IV), Pu(IV), Tc(IV) and Tc(VII) all readily substitute into the material structures. MD modeling indicated that strain associated with radiation-induced amorphization would not affect the integrity of surrounding crystalline materials, and these results were validated via ion beam experimental studies. Finally, we have evaluated the leach rates of the barren materials, as determined by batch and flow-through reactor experiments. ZrW 2 0 8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten releases rates from Zr2WP2012 rapidly drop, show little dependence on short-term changes in fluid contact time, and in over time, become tied to P release rates. The results presented here suggest that this material may be a viable waste-form for some hard-to-handle radionuclides such as Pu and Tc. ACKNOWLEDGEMENTS The authors acknowledge the contributions to this report from Sandia National Laboratories researchers Steven Meserole, Mark Rodriguez, Clay Payne, Tim Boyle, Nate Padilla, Khalid Hattar, Anthony Monterrosa, Trevor Clark, and Daniel Perry.
Journal of Physical Chemistry C
The phonon, infrared, and Raman spectroscopic properties of zirconium tungsten phosphate, Zr2(WO4)(PO4)2 (space group Pbcn, IT No. 60; Z = 4), have been extensively investigated using density functional perturbation theory (DFPT) calculations with the Perdew, Burke, and Ernzerhof exchange-correlation functional revised for solids (PBEsol) and validated by experimental characterization of Zr2(WO4)(PO4)2 prepared by hydrothermal synthesis. Using DFPT-simulated infrared, Raman, and phonon density-of-state spectra combined with Fourier transform infrared and Raman measurements, new comprehensive and extensive assignments have been made for the spectra of Zr2(WO4)(PO4)2, resulting in the characterization of its 29 and 34 most intense IR- and Raman-active modes, respectively. DFPT results also reveal that ν1(PO4) symmetric stretching and ν3(PO4) antisymmetric stretching bands have been interchanged in previous Raman experimental assignments. Negative thermal expansion in Zr2(WO4)(PO4)2 appears to have very limited impact on the spectral properties of this compound. This work shows the high accuracy of the PBEsol exchange-correlation functional for studying the spectroscopic properties of crystalline materials using first-principles methods.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International High-Level Radioactive Waste Management 2019, IHLRWM 2019
Synthetic routes and Direct Current Sintering were investigated to form core-shell structured materials or pellets of negative thermal expansion materials, ZrW2O8 and Zr2WP2O12 to be used as a radionuclide wasteform. The solution synthetic routes, while successful in the growth of additional phase pure ZrW2O8 on the surface of the ZrW2O8 seeds, did not completely encapsulate them. Via Direct Current Sintering, a narrow temperature band of phase stability for ZrW2O8 was identified from 650-700 C at a pressure of 60 MPa. The pellet was partially sintered, showing some void spaces by SEM. Zr2WP2O12 necessitated much higher temperatures to maintain phase purity, at 1400 C and produced a dense pellet.
International High-Level Radioactive Waste Management 2019, IHLRWM 2019
We use molecular simulations to provide a conceptual understanding of a crystalline-amorphous interface for a candidate negative thermal expansion (NTE) material. Specifically, classical molecular dynamics (MD) simulations were used to investigate the temperature and pressure dependence on structural properties of ZrW2O8. Polarizability of oxygen atoms was included to better account for the electronic charge distribution within the lattice. Constant-pressure simulations of cubic crystalline ZrW2O8 at ambient pressure reveal a slight NTE behavior, characterized by a small structural rearrangement resulting in oxygen sharing between adjacent WO4 tetrahedra. Periodic quantum calculations confirm that the MD-optimized structure is lower in energy than the idealized structure obtained from neutron diffraction experiments. Additionally, simulations of pressure-induced amorphization of ZrW2O8 at 300 K indicate that an amorphous phase forms at pressures greater than 10 GPa, and this phase persists when the pressure is decreased to 1 bar. Simulations were performed on a hybrid model consisting of amorphous ZrW2O8 in direct contact with the cubic crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the amorphous interface. Detailed analysis reveals the transition in metal coordination at the interface.
International High-Level Radioactive Waste Management 2019, IHLRWM 2019
Appropriate waste-forms for radioactive materials must isolate the radionuclides from the environment for long time periods. To accomplish this typically requires low waste-form solubility, to minimize radionuclide release to the environment. However, radiation eventually damages most waste-forms, leading to expansion, crumbling, increased exposed surface area, and faster dissolution. We have evaluated the use of a novel class of materials-ZrW2O8, Zr2P2WO12 and related compounds-that contract upon amorphization. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center-loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. We have synthesized these phases and have evaluated their leach rates. Tungsten forms stable aqueous species at neutral to basic conditions, making it a reliable indicator of phase dissolution. ZrW2O8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten release rates from Zr2P2WO12 rapidly drop and are tied to P release rates; we speculate that a low-solubility protective Zr-phosphate leach layer forms, slowing further dissolution.
Abstract not provided.
Abstract not provided.
Journal of Raman Spectroscopy
Cubic zirconium tungstate (α-ZrW2O8), a well-known negative thermal expansion material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Using combined Fourier transform infrared measurements and DFPT calculations, new and extensive assignments were made for the far-infrared (<400 cm−1) spectrum of α-ZrW2O8. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the superior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations for studying the spectroscopic properties of this material.
Abstract not provided.
Abstract not provided.
Sandia journal manuscript; Not yet accepted for publication
Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.
Abstract not provided.
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutions to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.