Publications

155 Results
Skip to search filters

LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis

Ao, Tommy A.; Donohoe, Brendan D.; Martinez, Carianne M.; Knudson, Marcus D.; Montes de Oca Zapiain, David M.; Morgan, Dane M.; Rodriguez, Mark A.; Lane, James M.

This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic structure in experiments, it has become increasingly important to develop computational analysis methods to support these experiments. When dynamically compressed lattices and orientations are not known a priori, the identification requires a cumbersome and sometimes intractable search of possible final states. These final states can include phase transition, deformation and mixed/evolving states. Our work consists of three parts: (1) development of an XRD simulation tool and use of traditional data science methods to match XRD patterns to experiments; (2) development of ML-based models capable of decomposing and identifying the lattice and orientation components of multicomponent experimental diffraction patterns; and (3) conducting experiments which showcase these new analysis tools in the study of phase transition mechanisms. Our target material has been cadmium sulfide, which exhibits complex orientation-dependent phase transformation mechanisms. In our current one-year LDRD, we have begun the analysis of high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until recently eluded orientation identification.

More Details

High pressure induced atomic and mesoscale phase behaviors of one-dimensional TiO2 anatase nanocrystals

MRS Bulletin

Meng, Lingyao; Duwal, Sakun D.; Lane, J.M.; Ao, Tommy A.; Stoltzfus, Brian S.; Knudson, Marcus D.; Park, Changyong; Chow, Paul; Xiao, Yuming; Fan, Hongyou F.; Qin, Yang

Abstract: Here, we report the high pressure phase and morphology behavior of ordered anatase titanium dioxide (TiO2) nanocrystal arrays. One-dimensional TiO2 nanorods and nanorices were synthesized and self-assembled into ordered mesostructures. Their phase and morphological transitions at both atomic scale and mesoscale under pressure were studied using in situ synchrotron wide- and small-angle x-ray scattering (WAXS and SAXS) techniques. At the atomic scale, synchrotron WAXS reveals a pressure-induced irreversible amorphization up to 35 GPa in both samples but with different onset pressures. On the mesoscale, no clear phase transformations were observed up to 20 GPa by synchrotron SAXS. Intriguingly, sintering of TiO2 nanorods at mesoscale into nano-squares or nano-rectangles, as well as nanorices into nanowires, were observed for the first time by transmission electron microscopy. Such pressure-induced nanoparticle phase-amorphization and morphological changes provide valuable insights for design and engineering structurally stable nanomaterials. Impact statement: The high pressure behavior of nanocrystals (NCs) continues to be of interest, as previous studies have demonstrated that an externally applied pressure can serve as an efficient tool to induce structural phase transitions of NC assemblies at both the atomic scale and mesoscale without altering any chemistry by manipulating NC interatomic and interparticle distances. In addition, the high pressure generated deviatoric stress has been proven to be able to force adjacent NCs to connect and fuse into new crystalline nanostructures. Although the atomic structural evolution of TiO2 NCs under pressure has been widely investigated in the past decades, open questions remain regarding the mesoscale phase transition and morphology of TiO2 NC assemblies as a function of pressure. Therefore, in this work, systemic high pressure experiments on ordered arrays of TiO2 nanorods and nanorices were conducted by employing wide/small angle x-ray scattering techniques. The sintering of TiO2 assemblies at mesoscale into various nanostructures under pressure were revealed by transmission electron microscopy. Overall, this high pressure work fills the current gap in research on the mesoscale phase behavior of TiO2 assemblies. The observed morphology tunability attained by applying pressure opens new pathways for engineering nanomaterials and optimizing their collective properties through mechanical compression stresses. Graphical abstract: [Figure not available: see fulltext.].

More Details

A Platform-Independent X-ray Diffraction Diagnostic for Phase Transition Kinetics in Traditional and Synthetic Microstructure Materials (LDRD Project 213088 Final Report)

Ao, Tommy A.; Austin, Kevin N.; Breden, E.W.; Brown, Justin L.; Dean, Steven W.; Duwal, Sakun D.; Fan, Hongyou F.; Kalita, Patricia K.; Knudson, Marcus D.; Meng, Lingyao M.; Morgan, Dane D.; Pacheco, Lena M.; Qin, Yang Q.; Stoltzfus, Brian S.; Thurston, Bryce A.; Usher, Joshua M.; Lane, James M.

Pulsed-power generators using the magnetic loading technique are able to produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects such as dislocations. Here, we present a cost effective, compact X-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically-driven ramp compression of materials with single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials community. The success in fielding this new XRD diagnostic dramatically improves our predictive capability and understanding of rate-dependent behavior at or near phase transition. As Sandia plans the next-generation pulse-power driver platform, a key element needed to deliver new state-of-the-art experiments will be having the necessary diagnostic tools to probe new regimes and phenomena. These diagnostics need to be as versatile, compact, and portable as they are powerful. The development of a platform-independent XRD diagnostic gives Sandia researchers a new window to study the microstructure and phase dynamics of materials under load. This project has paved the way for phase transition research in a variety of materials with mission interest.

More Details

Scale and rate in CdS pressure-induced phase transition

AIP Conference Proceedings

Lane, J.M.D.; Thompson, Aidan P.; Srivastava, Ishan S.; Grest, Gary S.; Ao, Tommy A.; Stoltzfus, Brian S.; Austin, Kevin N.; Fan, H.; Morgan, D.; Knudson, Marcus D.

We describe recent efforts to improve our predictive modeling of rate-dependent behavior at, or near, a phase transition using molecular dynamics simulations. Cadmium sulfide (CdS) is a well-studied material that undergoes a solid-solid phase transition from wurtzite to rock salt structures between 3 and 9 GPa. Atomistic simulations are used to investigate the dominant transition mechanisms as a function of orientation, size and rate. We found that the final rock salt orientations were determined relative to the initial wurtzite orientation, and that these orientations were different for the two orientations and two pressure regimes studied. The CdS solid-solid phase transition is studied, for both a bulk single crystal and for polymer-encapsulated spherical nanoparticles of various sizes.

More Details

Thermodynamics of the insulator-metal transition in dense liquid deuterium

Physical Review B

Desjarlais, Michael P.; Knudson, Marcus D.; Redmer, R.

Recent dynamic compression experiments [M. D. Knudson, Science 348, 1455 (2015)10.1126/science.aaa7471; P. M. Celliers, Science 361, 677 (2018)10.1126/science.aat0970] have observed the insulator-metal transition in dense liquid deuterium, but with an approximately 95-GPa difference in the quoted pressures for the transition at comparable estimated temperatures. It was claimed in the latter of these two papers that a very large latent heat effect on the temperature was overlooked in the first, requiring correction of those temperatures downward by a factor of 2, thereby putting both experiments on the same theoretical phase boundary and reconciling the pressure discrepancy. We have performed extensive path-integral molecular dynamics calculations with density functional theory to directly calculate the isentropic temperature drop due to latent heat in the insulator-metal transition for dense liquid deuterium and show that this large temperature drop is not consistent with the underlying thermodynamics.

More Details

Sound velocity, shear modulus, and shock melting of beryllium along the Hugoniot

Physical Review B

McCoy, C.A.; Knudson, Marcus D.; Desjarlais, Michael P.

Magnetically launched flyer plates were used to investigate the shock response of beryllium between 90 and 300 GPa. Solid aluminum flyer plates drove steady shocks into polycrystalline beryllium to constrain the Hugoniot from 90 to 190 GPa. Multilayered copper/aluminum flyer plates generated a shock followed by an overtaking rarefaction which was used to determine the sound velocity in both solid and liquid beryllium between 130 and 300 GPa. Disappearance of the longitudinal wave was used to identify the onset of melt along the Hugoniot and measurements were compared to density functional theory calculations to explore the proposed hcp-bcc transition at high pressure. The onset of melt along the Hugoniot was identified at ∼205GPa, which is in good agreement with theoretical predictions. These results show no clear indication of an hcp-bcc transition prior to melt along the beryllium Hugoniot. Rather, the shear stress, determined from the release wave profiles, was found to gradually decrease with stress and eventually vanish at the onset of melt.

More Details

Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

Physical Review B

McCoy, C.A.; Knudson, Marcus D.; Root, Seth R.

Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurements of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. Combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.

More Details

Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows

Journal of Applied Physics

McCoy, C.A.; Knudson, Marcus D.

Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ∼200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, at ∼100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. We show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.

More Details

Extension of the Hugoniot and analytical release model of α -quartz to 0.2-3 TPa

Journal of Applied Physics

Desjarlais, Michael P.; Knudson, Marcus D.; Cochrane, Kyle C.

In recent years, α-quartz has been used prolifically as an impedance matching standard in shock wave experiments in the multi-Mbar regime (1 Mbar = 100 GPa = 0.1 TPa). This is due to the fact that above ∼90-100 GPa along the principal Hugoniot α-quartz becomes reflective, and thus, shock velocities can be measured to high precision using velocity interferometry. The Hugoniot and release of α-quartz have been studied extensively, enabling the development of an analytical release model for use in impedance matching. However, this analytical release model has only been validated over a range of 300-1200 GPa (0.3-1.2 TPa). Here, we extend this analytical model to 200-3000 GPa (0.2-3 TPa) through additional α-quartz Hugoniot and release measurements, as well as first-principles molecular dynamics calculations.

More Details

Sandia Dynamic Materials Program Strategic Plan

Flicker, Dawn G.; Benage, John F.; Desjarlais, Michael P.; Knudson, Marcus D.; Leifeste, Gordon T.; Lemke, Raymond W.; Mattsson, Thomas M.; Wise, Jack L.

Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed by adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.

More Details

Results from new multi-megabar shockless compression experiments at the Z machine

AIP Conference Proceedings

Davis, Jean-Paul D.; Knudson, Marcus D.; Brown, Justin L.

Sandia's Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This paper details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer than existing models.

More Details

Shock compression experiments on Lithium Deuteride (LiD) single crystals

Journal of Applied Physics

Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

Shock compression experiments in the few hundred GPa (multi-Mbar) regime were performed on Lithium Deuteride single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ∼190 and 570 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of reshock states up to ∼920 GPa. The experimental measurements are compared with density functional theory calculations, tabular equation of state models, and legacy nuclear driven results that have been reanalyzed using modern equations of state for the shock wave standards used in the experiments.

More Details

Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

Journal of Applied Physics

Seagle, Christopher T.; Davis, Jean-Paul D.; Knudson, Marcus D.

Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. Velocimetry measurements were employed to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ∼1.8 mm thick. A dual thickness Lagrangian analysis was performed on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. An elastic response was observed on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual sample analyses (up to ∼1.8 mm) combined with a relative timing accuracy of ∼0.2 ns resulted in an uncertainty of less than 1% on density and stress at ∼200 GPa peak loading on one experiment and <4% on peak loading at ∼330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.

More Details

Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

Journal of Applied Physics

Lemke, Raymond W.; Dolan, Daniel H.; Dalton, D.G.; Brown, Justin L.; Tomlinson, K.; Robertson, G.R.; Knudson, Marcus D.; Harding, Eric H.; Mattsson, A.E.; Carpenter, John H.; Drake, Richard R.; Cochrane, Kyle C.; Blue, B.E.; Robinson, Allen C.; Mattsson, Thomas M.

We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David R.; Stoltzfus, Brian S.; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul D.; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.; Goerz, D.A.; Spielman, R.B.; Goldlust, J.A.; Cravey, W.R.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

Science

Knudson, Marcus D.; Desjarlais, Michael P.; Becker, A.; Lemke, Raymond W.; Cochrane, Kyle C.; Savage, Mark E.; Bliss, David E.; Mattsson, Thomas M.; Redmer, R.

Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

More Details

Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

Physical Review B - Condensed Matter and Materials Physics

Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora P.

Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ∼400-1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ∼190 and ∼110 mg/cc silica aerogel standards. These data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. As an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

More Details

Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

Journal of Applied Physics

Davis, Jean-Paul D.; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

Magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.

More Details

Shock compression experiments on Lithium Deuteride single crystals

Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

More Details

On the scaling of the magnetically accelerated flyer plate technique to currents greater than 20 MA

Journal of Physics: Conference Series

Lemke, Raymond W.; Knudson, Marcus D.; Cochrane, Kyle C.; Desjarlais, Michael P.; Asay, J.R.

In this article we discuss scaling the magnetically accelerated flyer plate technique to currents greater than is available on the Z accelerator. Peak flyer plate speeds in the range 7-46 km/s are achieved in pulsed power driven, hyper-velocity impact experiments on Z for peak currents in the range 8-20 MA. The highest (lowest) speeds are produced using aluminum (aluminum-copper) flyer plates. In either case, the ≈1 mm thick flyer plate is shocklessly accelerated by magnetic pressure to ballistic speed in ≈400 ns; it arrives at the target with a fraction of material at standard density. During acceleration a melt front, due to resistive heating, moves from the drive-side toward the target-side of the flyer plate; the speed of the melt front increases with increasing current. Peak flyer speeds on Z scale quadratically (linearly) with current at the low (high) end of the range. Magnetohydrodynamic simulation shows that the change in scaling is due to geometric deformation, and that linear scaling continues as current increases. However, the combined effects of shockless acceleration and resistive heating lead to an upper bound on the magnetic field feasible for pulsed power driven flyer plate experiments, which limits the maximum possible speed of a useful flyer plate to < 100 km/s. © Published under licence by IOP Publishing Ltd.

More Details

Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments

AIP Conference Proceedings

Knudson, Marcus D.

For the past decade, a large, interdisciplinary team at Sandia National Laboratories has been refining the Z Machine (20+ MA and 10+ MGauss) into a mature, robust, and precise platform for material dynamics experiments in the multi-Mbar pressure regime. In particular, significant effort has gone into effectively coupling condensed matter theory, magneto-hydrodynamic simulation, and electromagnetic modeling to produce a fully self-consistent simulation capability able to very accurately predict the performance of the Z machine and various experimental load configurations. This capability has been instrumental in the ability to develop experimental platforms to routinely perform magnetic ramp compression experiments to over 4 Mbar, and magnetically accelerate flyer plates to over 40 km/s, creating over 20 Mbar impact pressures. Furthermore, a strong tie has been developed between the condensed matter theory and the experimental program. This coupling has been proven time and again to be extremely fruitful, with the capability of both theory and experiment being challenged and advanced through this close interrelationship. This paper will provide an overview of the material dynamics platform and discuss several examples of the use of Z to perform extreme material dynamics studies with unprecedented accuracy in support of basic science, planetary astrophysics, inertial confinement fusion, and the emerging field of high energy density laboratory physics. © 2012 American Institute of Physics.

More Details

Determination of pressure and density of shocklessly compressed beryllium from x-ray radiography of a magnetically driven cylindrical liner implosion

AIP Conference Proceedings

Lemke, R.W.; Martin, M.R.; McBride, Ryan D.; Davis, Jean-Paul D.; Knudson, Marcus D.; Sinars, Daniel S.; Smith, Ian C.; Savage, Mark E.; Stygar, William A.; Killebrew, K.; Flicker, Dawn G.; Herrmann, Mark H.

We describe a technique for measuring the pressure and density of a metallic solid, shocklessly compressed to multi-megabar pressure, through x-ray radiography of a magnetically driven, cylindrical liner implosion. Shockless compression of the liner produces material states that correspond approximately to the principal compression isentrope (quasi-isentrope). This technique is used to determine the principal quasi-isentrope of solid beryllium to a peak pressure of 2.4 Mbar from x-ray images of a high current (20 MA), fast (∼100 ns) liner implosion. © 2012 American Institute of Physics.

More Details

Solid liner implosions on Z for producing multi-megabar, shockless compressions

Physics of Plasmas

Martin, M.R.; Lemke, Raymond W.; McBride, Ryan D.; Davis, Jean-Paul D.; Dolan, Daniel H.; Knudson, Marcus D.; Cochrane, K.R.; Sinars, Daniel S.; Smith, Ian C.; Savage, Mark E.; Stygar, William A.; Killebrew, K.; Flicker, Dawn G.; Herrmann, Mark H.

Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen, Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50 kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. © 2012 American Institute of Physics.

More Details

High-pressure shock behavior of WC and Ta2O5 powders

Vogler, Tracy V.; Root, Seth R.; Knudson, Marcus D.; Reinhart, William D.

Planar shock experiments were conducted on granular tungsten carbide (WC) and tantalum oxide (Ta{sub 2}O{sub 5}) using the Z machine and a 2-stage gas gun. Additional shock experiments were also conducted on a nearly fully dense form of Ta{sub 2}O{sub 5}. The experiments on WC yield some of the highest pressure results for granular materials obtained to date. Because of the high distention of Ta{sub 2}O{sub 5}, the pressures obtained were significantly lower, but the very high temperatures generated led to large contributions of thermal energy to the material response. These experiments demonstrate that the Z machine can be used to obtain accurate shock data on granular materials. The data on Ta{sub 2}O{sub 5} were utilized in making improvements to the P-{lambda} model for high pressures; the model is found to capture the results not only of the Z and gas gun experiments but also those from laser experiments on low density aerogels. The results are also used to illustrate an approach for generating an equation of state using only the limited data coming from nanoindentation. Although the EOS generated in this manner is rather simplistic, for this material it gives reasonably good results.

More Details

Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator

International Journal of Impact Engineering

Lemke, R.W.; Knudson, Marcus D.; Davis, Jean-Paul D.

The intense magnetic field generated by the Z accelerator at Sandia National Laboratories is used as a pressure source for material science studies. A current of ∼20 MA can be delivered to the loads used in experiments on a time scale of ∼100-600 ns. Magnetic fields (pressures) exceeding 1200 T (600 GPa) have been produced in planar configurations. In one application we have developed, the magnetic pressure launches a flyer plate to ultra-high velocity in a plate impact experiment; equation of state data is obtained on the Hugoniot of a material that is shock compressed to multi-megabar pressure. This capability has been enhanced by the recent development of a planar stripline configuration that increases the magnetic pressure for a given current. Furthermore, the cross sectional area of a stripline flyer plate is larger than in previous coaxial loads; this improves the planarity of the flyer thereby reducing measurement uncertainty. Results of experiments and multi-dimensional magneto hydrodynamic (MHD) simulation are presented for ultra-high velocity aluminum and copper flyer plates. Aluminum flyer plates with dimensions ∼25 mm by ∼13 mm by ∼1 mm have been launched to velocities up to ∼45 km/s; for copper the peak velocity is ∼22 km/s. The significance of these results is that part of the flyer material remains solid at impact with the target; an accomplishment that is made possible by shaping the dynamic pressure (current) ramp so that the flyer compresses quasi-isentropically (i.e., shocklessly) during acceleration.

More Details

Shock compression of liquid helium and helium-hydrogen mixtures : development of a cryogenic capability for shock compression of liquid helium on Z, final report for LDRD Project 141536

Lopez, A.; Shelton, Keegan P.; Knudson, Marcus D.

This final report on SNL/NM LDRD Project 141536 summarizes progress made toward the development of a cryogenic capability to generate liquid helium (LHe) samples for high accuracy equation-of-state (EOS) measurements on the Z current drive. Accurate data on He properties at Mbar pressures are critical to understanding giant planetary interiors and for validating first principles density functional simulations, but it is difficult to condense LHe samples at very low temperatures (<3.5 K) for experimental studies on gas guns, magnetic and explosive compression devices, and lasers. We have developed a conceptual design for a cryogenic LHe sample system to generate quiescent superfluid LHe samples at 1.5-1.8 K. This cryogenic system adapts the basic elements of a continuously operating, self-regulating {sup 4}He evaporation refrigerator to the constraints of shock compression experiments on Z. To minimize heat load, the sample holder is surrounded by a double layer of thermal radiation shields cooled with LHe to 5 K. Delivery of LHe to the pumped-He evaporator bath is controlled by a flow impedance. The LHe sample holder assembly features modular components and simplified fabrication techniques to reduce cost and complexity to levels required of an expendable device. Prototypes have been fabricated, assembled, and instrumented for initial testing.

More Details

High accuracy Hugoniot measurements at multi-megabar pressure utilizing the Sandia Z accelerator

Journal of Physics: Conference Series

Alexander, Charles S.; Knudson, Marcus D.; Hall, Clint A.

The Hugoniot response of materials is centrally important in the field of high pressure science. Highly accurate Hugoniot measurements not only provide better material references but also allow for the detection of subtle material phenomena. A process has been developed utilizing the Sandia Z accelerator to measure Hugoniot response at multi-megabar pressure resulting in extremely high accuracy data. Key considerations are the use of large surface area flyer plates allowing measurement configurations with multiple targets and diagnostics. This allows for greatly reduced uncertainty in the data. The details of this process are given and each aspect is closely examined focusing on the individual contributions to the overall accuracy of the result. © 2010 IOP Publishing Ltd.

More Details

Equation of state and transport property measurements of warm dense matter

Knudson, Marcus D.; Desjarlais, Michael P.

Location of the liquid-vapor critical point (c.p.) is one of the key features of equation of state models used in simulating high energy density physics and pulsed power experiments. For example, material behavior in the location of the vapor dome is critical in determining how and when coronal plasmas form in expanding wires. Transport properties, such as conductivity and opacity, can vary an order of magnitude depending on whether the state of the material is inside or outside of the vapor dome. Due to the difficulty in experimentally producing states near the vapor dome, for all but a few materials, such as Cesium and Mercury, the uncertainty in the location of the c.p. is of order 100%. These states of interest can be produced on Z through high-velocity shock and release experiments. For example, it is estimated that release adiabats from {approx}1000 GPa in aluminum would skirt the vapor dome allowing estimates of the c.p. to be made. This is within the reach of Z experiments (flyer plate velocity of {approx}30 km/s). Recent high-fidelity EOS models and hydrocode simulations suggest that the dynamic two-phase flow behavior observed in initial scoping experiments can be reproduced, providing a link between theory and experiment. Experimental identification of the c.p. in aluminum would represent the first measurement of its kind in a dynamic experiment. Furthermore, once the c.p. has been experimentally determined it should be possible to probe the electrical conductivity, opacity, reflectivity, etc. of the material near the vapor dome, using a variety of diagnostics. We propose a combined experimental and theoretical investigation with the initial emphasis on aluminum.

More Details

Towards a predictive MHD simulation capability for designing hypervelocity magnetically-driven flyer plates and PWclass z-pinch x-ray sources on Z and ZR

Mehlhorn, Thomas A.; Yu, Edmund Y.; Vesey, Roger A.; Cuneo, M.E.; Jones, Brent M.; Knudson, Marcus D.; Sinars, Daniel S.; Robinson, Allen C.; Trucano, Timothy G.; Brunner, Thomas A.; Desjarlais, Michael P.; Garasi, Christopher J.; Haill, Thomas A.; Hanshaw, Heath L.; Lemke, Raymond W.; Oliver, Bryan V.; Peterson, Kyle J.

Abstract not provided.

Shockless magnetic acceleration of al flyer plates to ultra-high velocity using multi-megabar drive pressures

Lemke, Raymond W.; Knudson, Marcus D.; Davis, Jean-Paul D.; Bliss, David E.; Slutz, Stephen A.; Giunta, Anthony A.; Harjes, Henry C.

The intense magnetic field generated in the 20 MA Z-machine is used to accelerate metallic flyer plates to high velocity for the purpose of generating strong shocks in equation of state experiments. We present results pertaining to experiments in which a 0.085 cm thick Al flyer plate is magnetically accelerated across a vacuum gap into a quartz target. Peak magnetic drive pressures up to 4.9 Mbar were produced, which yielded a record 34 km/s flyer velocity without destroying it by shock formation or Joule heating. Two-dimensional MHD simulation was used to optimize the magnetic drive pressure on the flyer surface, shape the current pulse to accelerate the flyer without shock formation (i.e., quasi-isentropically), and predict the flyer velocity. Shock pressures up to 11.5 Mbar were produced in quartz. Accurate measurements of the shock velocity indicate that a fraction of the flyer is at solid density when it arrives at the target. Comparison of measurements and simulation results yields a consistent picture of the flyer state at impact with the quartz target.

More Details

Optimization of magnetically accelerated, ultra-high velocity aluminum flyer plates for use in plate impact, shock wave experiments

Proposed for publication in the Journal of Applied Physics.

Lemke, Raymond W.; Knudson, Marcus D.; Bliss, David E.; Harjes, Henry C.; Slutz, Stephen A.

The intense magnetic field produced by the 20 MA Z accelerator is used as an impulsive pressure source to accelerate metal flyer plates to high velocity for the purpose of performing plate impact, shock wave experiments. This capability has been significantly enhanced by the recently developed pulse shaping capability of Z, which enables tailoring the rise time to peak current for a specific material and drive pressure to avoid shock formation within the flyer plate during acceleration. Consequently, full advantage can be taken of the available current to achieve the maximum possible magnetic drive pressure. In this way, peak magnetic drive pressures up to 490 GPa have been produced, which shocklessly accelerated 850 {micro}m aluminum (6061-T6) flyer plates to peak velocities of 34 km/s. We discuss magnetohydrodynamic (MHD) simulations that are used to optimize the magnetic pressure for a given flyer load and to determine the shape of the current rise time that precludes shock formation within the flyer during acceleration to peak velocity. In addition, we present results pertaining to plate impact, shock wave experiments in which the aluminum flyer plates were magnetically accelerated across a vacuum gap and impacted z-cut, {alpha}-quartz targets. Accurate measurements of resulting quartz shock velocities are presented and analyzed through high-fidelity MHD simulations enhanced using optimization techniques. Results show that a fraction of the flyer remains at solid density at impact, that the fraction of material at solid density decreases with increasing magnetic pressure, and that the observed abrupt decrease in the quartz shock velocity is well correlated with the melt transition in the aluminum flyer.

More Details

Probing fundamental properties of matter at extreme pressures and densities on the Z accelerator

Knudson, Marcus D.

The Sandia Z accelerator has become a unique platform to study matter at extreme conditions. The large currents (20 MA, 200-300 ns rise time) and magnetic fields (several MG) produced by Z generate magnetic compression in the multi-Mbar regime, enabling quasi-isentropic compression experiments (ICE) to several Mbar stresses. Thus, the Z platform is useful in determining high stress material isentropes, performing phase transition studies (including rapid solidification), obtaining constitutive property information, and estimating material strength at high stress. Furthermore, the magnetic pressure can also accelerate macroscopic flyer plates to velocities in excess of 30 km/s. Thus, impact experiments can be performed to ultra-high pressures. Furthermore, the adiabatic release response of materials can be investigated through shock and release experiments, allowing hot, dense liquid states to be probed. The Z platform allows a large expanse of the equation of state surface to be explored enabling new and exciting material dynamics experiments. Specific examples from each of the areas mentioned above will be discussed.

More Details

Equations of state for hydrogen and deuterium

Knudson, Marcus D.; Kerley, Gerald I.

This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixture models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.

More Details

A new laser trigger system for current pulse shaping and jitter reduction on Z

Digest of Technical Papers-IEEE International Pulsed Power Conference

Bliss, David E.; Collins, R.T.; Dalton, D.G.; Dawson, E.J.; Doty, R.L.; Downey, T.L.; Harjes, Henry C.; Illescas, E.A.; Knudson, Marcus D.; Lewis, B.A.; Mills, Jerry A.; Ploor, S.D.; Podsednik, Jason P.; Rogowski, Sonrisa T.; Shams, M.S.; Struve, Kenneth W.

A new laser trigger system (LTS) has been installed on Z that benefits the experimenter with reduced temporal jitter on the x-ray output, the confidence to use command triggers for time sensitive diagnostics and the ability to shape the current pulse at the load. This paper presents work on the pulse shaping aspects of the new LTS. Pulse shaping is possible because the trigger system is based on 36 individual lasers, one per each pulsed power module, instead of a single laser for the entire machine. The firing time of each module can be individually controlled to create an overall waveform that is the linear superposition of all 36 modules. In addition, each module can be set to a long- or short-pulse mode for added flexibility. The current waveform has been stretched from ∼100 ns to ∼250 ns. A circuit model has been developed with BERTHA Code, which contains the independent timing feature of the new LTS to predict and design pulse shapes. The ability to pulse-shape directly benefits isentropic compression experiments (ICE) and equation of state measurements (EOS) for the shock physics programs at Sandia National Laboratories. With the new LTS, the maximum isentropic loading applied to Cu samples 750 um thick has been doubled to 3.2 Mb without generating a shockwave. Macroscopically thick sample of Al, 1.5 mm, have been isentropically compressed to 1.7 Mb. Also, shockless Ti flyer-plates have been launched to 21 km·s-1, remaining in the solid state until impact.

More Details

Hugoniot, reverberating wave, and mechanical re-shock measurements of liquid deuterium to 400 GPa using plate impact techniques

Proposed for publication in Physical Review B.

Knudson, Marcus D.; Knudson, Marcus D.; Bailey, James E.; Hall, Clint A.; Asay, James R.; Deeney, Christopher D.

The high-pressure response of cryogenic liquid deuterium (LD{sub 2}) has been studied to pressures of {approx}400GPa and densities of {approx}1.5g/cm{sup 3}. Using intense magnetic pressure produced by the Sandia National Laboratories Z accelerator, macroscopic aluminum or titanium flyer plates, several mm in lateral dimensions and a few hundred microns in thickness, have been launched to velocities in excess of 22 km/s, producing constant pressure drive times of approximately 30 ns in plate impact, shock wave experiments. This flyer plate technique was used to perform shock wave experiments on LD{sub 2} to examine its high-pressure equation of state. Using an impedance matching method, Hugoniot measurements of LD{sub 2} were obtained in the pressure range of {approx}22-100GPa. Results of these experiments indicate a peak compression ratio of approximately 4.3 on the Hugoniot. In contrast, previously reported Hugoniot states inferred from laser-driven experiments indicate a peak compression ratio of approximately 5.5-6 in this same pressure range. The stiff Hugoniot response observed in the present impedance matching experiments was confirmed in simultaneous, independent measurements of the relative transit times of shock waves reverberating within the sample cell, between the front aluminum drive plate and the rear sapphire window. The relative timing was found to be sensitive to the density compression along the principal Hugoniot. Finally, mechanical reshock measurements of LD{sub 2} using sapphire, aluminum, and {alpha}-quartz anvils were made. These results also indicate a stiff response, in agreement with the Hugoniot and reverberating wave measurements. Using simple model-independent arguments based on wave propagation, the principal Hugoniot, reverberating wave, and sapphire anvil reshock measurements are shown to be internally self-consistent, making a strong case for a Hugoniot response with a maximum compression ratio of {approx}4.3-4.5. The trends observed in the present data are in very good agreement with several ab initio models and a recent chemical picture model for LD{sub 2}, but in disagreement with previously reported laser-driven shock results. Due to this disagreement, significant emphasis is placed on the discussion of uncertainties, and the potential systematic errors associated with each measurement.

More Details

Self-consistent, 2D magneto-hydrodynamic simulations of magnetically driven flyer plate experiments on the Z-machine

Lemke, Raymond W.; Lemke, Raymond W.; Knudson, Marcus D.; Davis, Jean-Paul D.; Bliss, David E.; Harjes, Henry C.

The intense magnetic field generated in the 20 MA Z-machine is used to accelerate metallic flyer plates to high velocity (peak velocity {approx}20-30 km/s) for the purpose of generating strong shocks (peak pressure {approx}5-10 Mb) in equation of state experiments. We have used the Sandia developed, 2D magneto-hydrodynamic (MHD) simulation code ALEGRA to investigate the physics of accelerating flyer plates using multi-megabar magnetic drive pressures. Through detailed analysis of experimental data using ALEGRA, we developed a 2D, predictive MHD model for simulating material science experiments on Z. The ALEGRA MHD model accurately produces measured time dependent flyer velocities. Details of the ALEGRA model are presented. Simulation and experimental results are compared and contrasted for shots using standard and shaped current pulses whose peak drive pressure is {approx}2 Mb. Isentropic compression of Al to 1.7 Mb is achieved by shaping the current pulse.

More Details

Z facility diagnostic system for high energy density physics at Sandia National Laboratories

Leeper, Ramon J.; Deeney, Christopher D.; Dunham, Gregory S.; Fehl, David L.; Franklin, James K.; Hawn, Rona E.; Hall, Clint A.; Hurst, Michael J.; Jinzo, Tanya D.; Jobe, Daniel O.; Leeper, Ramon J.; Joseph, Nathan R.; Knudson, Marcus D.; Lake, Patrick W.; Lazier, Steven E.; Lucas, J.; McGurn, John S.; Manicke, Matthew P.; Mock, Raymond M.; Moore, T.C.; Nash, Thomas J.; Bailey, James E.; Nelson, Alan J.; Nielsen, D.S.; Olson, Richard E.; Pyle, John H.; Rochau, G.A.; Ruggles, Larry R.; Ruiz, Carlos L.; Sanford, Thomas W.; Seamen, Johann F.; Bennett, Guy R.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Stygar, William A.; Wenger, D.F.; Seamen, Johann J.; Carlson, Alan L.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.

Abstract not provided.

Equation of state measurements in liquid deuterium to 100 GPa

Knudson, Marcus D.; Knudson, Marcus D.; Bailey, James E.; Lemke, Raymond W.; Desjarlais, Michael P.; Hall, Clint A.; Deeney, Christopher D.; Asay, James R.

Using intense magnetic pressure, a method was developed to launch flyer plates to velocities in excess of 20 km s{sup -1}. This technique was used to perform plate-impact, shock wave experiments on cryogenic liquid deuterium (LD{sub 2}) to examine its high-pressure equation of state (EOS). Using an impedance matching method, Hugoniot measurements were obtained in the pressure range of 22--100 GPa. The results of these experiments disagree with the previously reported Hugoniot measurements of LD2 in the pressure range above {approx}40 GPa, but are in good agreement with first principles, ab initio models for hydrogen and its isotopes.

More Details

Equation of State Measurements in Liquid Deuterium to 70 Gpa

Knudson, Marcus D.; Bailey, James E.; Asay, James R.

Using intense magnetic pressure, a method was developed to launch flyer plates to velocities in excess of 20 km/s. This technique was used to perform plate-impact, shock wave experiments on cryogenic liquid deuterium (LD{sub 2}) to examine its high-pressure equation of state (EOS). Using an impedance matching method, Hugoniot measurements were obtained in the pressure range of 30-70 GPa. The results of these experiments disagree with previously reported Hugoniot measurements of LD{sub 2} in the pressure range above {approx}40 GPa, but are in good agreement with first principles, ab-initio models for hydrogen and its isotopes.

More Details

Using the Saturn Accelerator for Isentropic Compression Experiments (ICE)

Furnish, Michael D.; Davis, Jean-Paul D.; Knudson, Marcus D.; Bergstresser, Thomas K.; Deeney, Christopher D.; Asay, James R.

Recently an innovative technique known as the Isentropic Compression Experiment (ICE) was developed that allows the dynamic compressibility curve of a material to be measured in a single experiment. Hence, ICE significantly reduces the cost and time required for generating and validating theoretical models of dynamic material response. ICE has been successfully demonstrated on several materials using the 20 MA Z accelerator, resulting in a large demand for its use. The present project has demonstrated its use on another accelerator, Saturn. In the course of this study, Saturn was tailored to produce a satisfactory drive time structure, and instrumented to produce velocity data. Pressure limits are observed to be approximately 10-15 GPa (''LP'' configuration) or 40-50 GPa (''HP'' configuration), depending on sample material. Drive reproducibility (panel to panel within a shot and between shots) is adequate for useful experimentation, but alignment fixturing problems make it difficult to achieve the same precision as is possible at Z. Other highlights included the useful comparison of slightly different PZT and ALOX compositions (neutron generator materials), temperature measurement using optical pyrometry, and the development of a new technique for preheating samples. 28 ICE tests have been conducted at Saturn to date, including the experiments described herein.

More Details

Shock Response of Diamond Crystals

Knudson, Marcus D.; Asay, James R.

Sandia is investigating the shock response of single-crystal diamond up to several Mbar pressure in a collaborative effort with the Institute for Shock Physics (ISP) at Washington State University (WSU). This is project intended to determine (i) the usefulness of diamond as a window material for high pressure velocity interferometry measurements, (ii) the maximum stress level at which diamond remains transparent in the visible region, (iii) if a two-wave structure can be detected and analyzed, and if so, (iv) the Hugoniot elastic limit (HEL) for the [110] orientation of diamond. To this end experiments have been designed and performed, scoping the shock response in diamond in the 2-3 Mbar pressure range using conventional velocity interferometry techniques (conventional VISAR diagnostic). In order to perform more detailed and highly resolved measurements, an improved line-imaging VISAR has been developed and experiments using this technique have been designed. Prior to performing these more detailed experiments, additional scoping experiments are being performed using conventional techniques at WSU to refine the experimental design.

More Details

Dispersive Velocity Measurements in Heterogeneous Materials

Trott, Wayne T.; Castaneda, Jaime N.; Baer, Melvin B.; Chhabildas, Lalit C.; Knudson, Marcus D.; Davis, Jean-Paul D.; Asay, James R.

In order to provide real-time data for validation of three dimensional numerical simulations of heterogeneous materials subjected to impact loading, an optically recording velocity interferometer system (ORVIS) has been adapted to a line-imaging instrument capable of generating precise mesoscopic scale measurements of spatially resolved velocity variations during dynamic deformation. Combining independently variable target magnification and interferometer fringe spacing, this instrument can probe a velocity field along line segments up to 15 mm in length. In high magnification operation, spatial resolution better than 10 {micro}m can be achieved. For events appropriate to short recording times, streak camera recording can provide temporal resolution better than 0.2 ns. A robust method for extracting spatially resolved velocity-time profiles from streak camera image data has been developed and incorporated into a computer program that utilizes a standard VISAR analysis platform. The use of line-imaging ORVIS to obtain measurements of the mesoscopic scale dynamic response of shocked samples has been demonstrated on several different classes of heterogeneous materials. Studies have focused on pressed, granular sugar as a simulant material for the widely used explosive HMX. For low-density (65% theoretical maximum density) pressings of sugar, material response has been investigated as a function of both impact velocity and changes in particle size distribution. The experimental results provide a consistent picture of the dispersive nature of the wave transmitted through these samples and reveal both transverse and longitudinal wave structures on mesoscopic scales. This observed behavior is consistent with the highly structured mesoscopic response predicted by 3-D simulations. Preliminary line-imaging ORVIS measurements on HMX as well as other heterogeneous materials such as foam and glass-reinforced polyester are also discussed.

More Details
155 Results
155 Results