Publications

10 Results
Skip to search filters

Development of a removable conformal coating through the synthetic incorporation of Diels-Alder thermally reversible adducts into an epoxy resin

ACS Symposium Series

Aubert, James H.; Tallant, David T.; Sawyer, P.S.; Garcia, Manuel J.

An epoxy-based conformal coating with a very low modulus has been developed for the environmental protection of electronic devices and for stress relief of those devices. The coating was designed to be removable by incorporating thermally-reversible Diels-Alder (D-A) adducts into the epoxy resin utilized in the formulation. The removability of the coating allows us to recover expensive components during development, to rebuild during production, to upgrade the components during their lifetime, to perform surveillance after deployment, and it aids in dismantlement of the components after their lifetime. The removability is the unique feature of this coating and was characterized by modulus versus temperature measurements, dissolution experiments, viscosity quench experiments, and FTIR. Both the viscosity quench experiments and the FTIR measurements allowed us to estimate the equilibrium constant of the D-A adducts in a temperature range from room temperature to 90 °C. © 2007 American Chemical Society.

More Details

Hygrothermal degradation of (3-glycidoxypropyl)trimethoxysilane films studied by neutron and X-ray reflectivity and attenuated total reflection infrared spectroscopy

Langmuir

Yim, Hyun Y.; Kent, Michael S.; Tallant, David T.; Garcia, Manuel J.; Majewski, J.

The chemical and structural changes within thin films of (3-glycidoxypropyl)trimethoxysilane (GPS) after exposure for various periods of time to air saturated with either D 2O or H 2O at 80°C were studied. The X-ray and neutron reflectivity (XR and NR), combined wuth attenuated total reflection infrared (ATR-IR) spectroscopy were used. The chemical degradation mechanism was identified by IR as hydrolysis of siloxane bonds. GPS films were prepared by dip-coating, which resulted in a greater and more variable thickness than for the spin-coated samples, for ATR-IR. The little changes in the reflectivity data was observed for films conditioned with D 2O at 80°C for one month.

More Details

Using self-assembling monolayers to study crack initiation in epoxy/silicon joints

Journal of Materials Research

Kent, Michael S.; Reedy, Earl D.; Yim, Hyun Y.; Matheson, A.; Sorenson, J.; Hall, J.; Schubert, K.; Tallant, David T.; Garcia, Manuel J.; Ohlhausen, T.; Assink, R.

The effect of the density and in-plane distribution of interfacial interactions on crack initiation in an epoxy-silicon joint was studied in nominally pure shear loading. Well-defined combinations of strong (specific) and weak (nonspecific) interactions were created using self-assembling monolayers. The in-plane distribution of strong and weak interactions was varied by employing two deposition methods: depositing mixtures of molecules with different terminal groups resulting in a nominally random distribution, and depositing methyl-terminated molecules in domains defined lithographically with the remaining area interacting through strong acid-base interactions. The two distributions lead to very different fracture behavior. For the case of the methyl-terminated domains (50 μm on a side) fabricated lithographically, the joint shear strength varies almost linearly with the area fraction of strongly interacting sites. From this we infer that cracks nucleate on or near the interface over nearly the entire range of bonded area fraction and do so at nearly the same value of local stress (load/bonded area). We postulate that the imposed heterogeneity in interfacial interactions results in heterogeneous stress and strain fields within the epoxy in close proximity to the interface. Simply, the bonded areas carry load while the methyl terminated domains carry negligible load. Stress is amplified adjacent to the well-bonded regions (and reduced adjacent to the poorly bonded regions), and this leads to crack initiation by plastic deformation and chain scission within the epoxy near the interface. For the case of mixed monolayers, the dependence is entirely different. At low areal density of strongly interacting sites, the joint shear strength is below the detection limit of our transducer for a significant range of mixed monolayer composition. With increasing density of strongly interacting sites, a sharp increase in joint shear strength occurs at a methyl terminated area fraction of roughly 0.90. We postulate that this coincides with the onset of yielding in the epoxy. For methyl-terminated area fractions less than 0.85, the joint shear strength becomes independent of the interfacial interactions. This indicates that fracture no longer initiates on the interface but away from the interface by a competing mechanism, likely plastic deformation and chain scission within the bulk epoxy. The data demonstrate that the in-plane distribution of interaction sites alone can affect the location of crack nucleation and the far-field stress required.

More Details

Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries

Boyle, Timothy J.; Segall, Judith M.; Cherry, Brian R.; Butler, Paul C.; Alam, Todd M.; Tallant, David T.; Malizia, Louis A.; Rodriguez, Marko A.; Ingersoll, David I.; Clark, Nancy H.; Garcia, Manuel J.; Simpson, Regina L.

Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. The precipitate was further identified by solid state {sup 27}Al MAS NMR data to possess predominantly octahedral A1 metal center which implies {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n} must undergo some internal rearrangements. A reaction sequence has been proposed to account for the various molecular species identified in this complex reaction mixture during the aging process. The metallurgical welds were of high quality. These results were all visually determined there was no mechanical testing performed. However, it is recommended that the end plate geometry and weld be changed. If the present weld strength, based on .003' - .005' penetration, is sufficient for unit performance, the end plate thickness can be reduced to .005' instead of the .020' thickness. This will enable the plug to be stamped so that it can form a cap rather than a plug and solve existing problems and increase the amount of catholyte which may be beneficial to battery performance.

More Details
10 Results
10 Results