Publications

44 Results
Skip to search filters

The effect of paramagnetic shift during thermal quench on internal components in fusion devices

Fusion Engineering and Design

Ulrickson, M.A.; Kotulski, J.D.

A plasma current disruption is usually initiated by impurity influx that causes a rapid decrease in plasma thermal stored energy (thermal quench). Thermal quench occurs in 500-2000 μs on a large device like ITER. Depending on the β value, the plasma may be either paramagnetic or diamagnetic. Thermal quench causes a large shift in paramagnetism (or diamagnetism) and a corresponding change in toroidal flux. The flux swing can be 1-2 Weber with the rate of change of the toroidal field between 25 and 150 T/s for a device like ITER. The toroidal field shift induces poloidal current in the vessel and possibly in internal components. We have developed a method for simulating the thermal quench field shift that is compatible for use with the electromagnetic simulation codes. The method is based on a radially thin shell having the shape of the last closed flux surface with poloidal current driven to duplicate the toroidal field shift. The magnitude of the current and its time history are adjusted to duplicate the flux change during a disruption thermal quench. We will present the results of using this method to simulate the induced currents in a vacuum vessel having two shells. © 2012 Elsevier B.V. All rights reserved.

More Details

Prediction of Critical Heat Flux in Water-Cooled Plasma Facing Components Using Computational Fluid Dynamics

Fusion Science and Technology

Youchison, Dennis L.; Ulrickson, M.A.

Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 °C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

More Details

Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics

Youchison, Dennis L.; Ulrickson, M.A.

Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

More Details

A comparison of two-phase computational fluid dynamics codes applied to the ITER first wall hypervapotron

IEEE Transactions on Plasma Science

Youchison, Dennis L.; Ulrickson, M.A.; Bullock, James H.

Enhanced radial transport in the plasma and the effect of ELMS may increase the ITER first wall heat loads to as much as 4 to 5 MW/m2 over localized areas. One proposed heatsink that can handle these higher loads is a CuCrZr hypervapotron. One concept for a first wall panel consists of 20 hypervapotron channels, each measuring 1400 mm long and 48.5 mm wide. The nominal cooling conditions anticipated for each channel are 400 g/s of water at 3 MPa and 100 °C. This will result in boiling over a portion of the total length. A two-phase thermalhydraulic analysis is required to predict accurately the thermal performance. Existing heat transfer correlations used for nucleate boiling are not appropriate here because the flow does not reach fully developed conditions in the multi-segmented channels. Our design-by-analysis approach used two commercial codes, Fluent and Star-CCM+, to perform computational fluid dynamics analyses with conjugate heat transfer. Both codes use the Rensselear (RPI) model for wall heat flux partitioning to model nucleate boiling as implemented in user-defined functions. We present a comparison between the two codes for this Eulerian multiphase problem that relies on temperature dependent materials properties. The analyses optimized the hypervapotron geometry, including teeth height and pitch, as well as the depth of the back channel to permit highly effective boiling heat transfer in the grooves between the teeth while ensuring that no boiling could occur at the back channel exit. The analysis used a representative heat flux profile with the peak heat flux of 5 MW/m2 limited to a 50 mm length. The maximum surface temperature of the heatsink is 415 °C. The baseline design uses 2 mm for the teeth height, a 3 mm width and 6 mm pitch, and a back channel depth of 8 mm. The teeth are detached from the sidewall by a 2-mm-wide slot on both sides that aids in sweep-out and quenching of the vapor bubbles. © 2006 IEEE.

More Details

Electromagnetic analysis of Forces and torques on the baseline and enhanced ITER shield modules due to plasma disruption

IEEE Transactions on Plasma Science

Kotulski, Joseph D.; Coats, Rebecca S.; Pasik, Michael F.; Ulrickson, M.A.

An electromagnetic analysis is performed on the ITER shield modules under different plasma-disruption scenarios using the OPERA-3d software. The models considered include the baseline design as provided by the International Organization and an enhanced design that includes the more realistic geometrical features of a shield module. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed. © 2010 IEEE.

More Details

Computational study of the electromagnetic forces and torques on different ITER first wall designs

Proceedings - Symposium on Fusion Engineering

Kotulski, J.D.; Coats, Rebecca S.; Pasik, Michael F.; Ulrickson, M.A.; Garde, J.

An electromagnetic analysis is performed on different first wall designs for the ITER device. The electromagnetic forces and torques present due to a plasma disruption event are calculated and compared for the different designs.

More Details

Electromagnetic analysis of forces and torques on the ITER shield modules due to plasma disruption

Proceedings - Symposium on Fusion Engineering

Kotulski, J.D.; Coats, Rebecca S.; Pasik, Michael F.; Ulrickson, M.A.

An electromagnetic analysis is performed on the ITER shield modules under different plasma disruption scenarios using the OPERA-3d software. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

More Details

Two-phase computational fluid dynamics analysis of a hypervapotron heatsink for ITER first wall applications

Ulrickson, M.A.

Enhanced radial transport in the plasma and the effect of ELMS may increase the ITER first wall heat loads to as much as 4 to 5 MW/m{sup 2} over localized areas. One proposed heatsink that can handle these higher loads is a CuCrZr hypervapotron. One concept for a first wall panel consists of 20 hypervapotron channels, 1400 mm long and 48.5 mm wide. The nominal cooling conditions anticipated for each channel are 400 g/s of water at 3 MPa and 100degC. This will result in boiling over a portion of the total length, and two-phase thermalhydraulic analysis is required to predict accurately the thermal performance. Existing heat transfer correlations used for nucleate boiling are not appropriate here, because the flow does not reach fully developed conditions in the multi-segmented channels. Our design-by-analysis approach used two commercial codes, CFdesign and Fluent, to perform computational fluid dynamics analyses with conjugate heat transfer. The Fluent simulations use the Rensselaer (RPI) model for wall heat flux partitioning to model nucleate boiling as implemented in user defined functions. A more computationally expensive volume-of-fluid (VOF) multiphase model encompassing only several hypervapotron teeth provided a check on the results. We present a comparison between the two codes for this Eulerian multi-phase problem that relies on the steam tables for the fluid properties. The analyses optimized the hypervapotron geometry including teeth height and pitch and the depth of the back channel to permit highly effective boiling heat transfer in the grooves between teeth while ensuring that no boiling could occur at the back channel exit. The analysis used a representative heat flux profile with the peak heat flux of 5 MW/m{sup 2} limited to a 50-mm-length. The surface temperature of the heatsink is kept well below 350degC. The baseline design uses 2 mm for the teeth height, a 3 mm width and 6 mm pitch, and a back channel depth of 8 mm. The teeth are detac- hed from the sidewall by a 2-mm-wide slot on both sides that aids in sweep-out and quenching of the vapor bubbles.

More Details

Development of joining processes and fabrication of US first wall qualification mockups for ITER

Proposed for publication in Fusion Engineering Design.

Puskar, J.D.; Watson, Roger M.; Ulrickson, M.A.

We report here the fabrication processes used to manufacture US Party Team First Wall Qualification Mockups along with the detailed microstructural characterization and mechanical properties of the Be/CuCrZr/316L HIP bonds. A companion submission to this conference describes details of the PMTF heat flux testing and the performance of the first US FWQM.

More Details

ITER first wall Module 18 - The US effort

Fusion Engineering and Design

Nygren, Richard E.; Ulrickson, M.A.; Tanaka, T.J.; Youchison, Dennis L.; Lutz, Thomas J.; Bullock, J.; Hollis, K.J.

The US will supply outboard Module 18 for the International Thermonuclear Experimental Reactor. This module, radially thinner than other modules with a "nose" that curves radially outward to mate with the divertor, has the potential for high electromagnetic (EM) loads from vertical displacement events and high heat loads. The 316LN-IG shield block and first wall (FW) panels must be slotted to mitigate the EM loads and progress in developing the design is summarized. The FW has beryllium (Be) armor joined to a water-cooled CuCrZr heat sink with embedded 316LN-IG cooling channels. The US Team is considering possible fabrication methods as the design develops. Brief results of high heat flux experiments at Sandia on mockups with plasma-sprayed Be armor prepared at Los Alamos National Laboratory are noted. © 2005 Elsevier B.V. All rights reserved.

More Details

Design integration of liquid surface divertors

Fusion Engineering and Design

Nygren, Richard E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassancin, A.; Smolentsev, S.S.; Kotschenreuther, M.

The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium, sodium and beryllium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied. © 2004 Elsevier B.V. All rights reserved.

More Details

Liquid metal integrated test system (LIMITS)

Fusion Engineering and Design

Tanaka, T.J.; Bauer, F.J.; Lutz, Thomas J.; McDonald, Jimmie M.; Nygren, Richard E.; Troncosa, K.P.; Ulrickson, M.A.; Youchison, Dennis L.

This paper describes the liquid metal integrated test system (LIMITS) at Sandia National Laboratories1. This system was designed to study the flow of molten metals and salts in a vacuum as a preliminary study for flowing liquid surfaces inside of magnetic fusion reactors. The system consists of a heated furnace with attached centrifugal pump, a vacuum chamber, and a transfer chamber for storage and addition of fresh material. Diagnostics include an electromagnetic flow meter, a high temperature pressure transducer, and an electronic level meter. Many ports in the vacuum chamber allow testing the thermal behavior of the flowing liquids heated with an electron beam or study of the effect of a magnetic field on motion of the liquid. Some preliminary tests have been performed to determine the effect of a static magnetic field on stream flow from a nozzle. © 2004 Elsevier B.V. All rights reserved.

More Details
44 Results
44 Results