Publications

43 Results
Skip to search filters

Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon

Nature Communications

Gertler, Shai; Otterstrom, Nils T.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

The growing demand for bandwidth makes photonic systems a leading candidate for future telecommunication and radar technologies. Integrated photonic systems offer ultra-wideband performance within a small footprint, which can naturally interface with fiber-optic networks for signal transmission. However, it remains challenging to realize narrowband (∼MHz) filters needed for high-performance communications systems using integrated photonics. In this paper, we demonstrate all-silicon microwave-photonic notch filters with 50× higher spectral resolution than previously realized in silicon photonics. This enhanced performance is achieved by utilizing optomechanical interactions to access long-lived phonons, greatly extending available coherence times in silicon. We use a multi-port Brillouin-based optomechanical system to demonstrate ultra-narrowband (2.7 MHz) notch filters with high rejection (57 dB) and frequency tunability over a wide spectral band (6 GHz) within a microwave-photonic link. We accomplish this with an all-silicon waveguide system, using CMOS-compatible fabrication techniques.

More Details

Nonreciprocal Frequency Domain Beam Splitter

Physical Review Letters

Otterstrom, Nils T.; Gertler, Shai; Kittlaus, Eric A.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Rakich, Peter T.; Davids, Paul D.; Lentine, Anthony L.

The canonical beam splitter - a fundamental building block of quantum optical systems - is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10-4) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.

More Details

Characterization of suspended membrane waveguides towards a photonic atom trap integrated platform

Optics Express

Gehl, M.; Kindel, William K.; Karl, Nicholas J.; Orozco, Adrian S.; Musick, Katherine M.; Trotter, Douglas C.; Dallo, Christina M.; Starbuck, Andrew L.; Leenheer, Andrew J.; DeRose, Christopher T.; Biedermann, Grant; Jau, Yuan-Yu J.; Lee, Jongmin L.

We demonstrate an optical waveguide device, capable of supporting the high, invacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magnetooptical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading. We evaluate two novel designs that explore critical thermal management features that enable this large power handling. This work represents a significant step toward an integrated platform for coupling neutral atom quantum systems to photonic and electronic integrated circuits on silicon.

More Details

Narrowband microwave-photonic notch filtering using Brillouin interactions in silicon

Optics InfoBase Conference Papers

Gertler, Shai; Otterstrom, Nils T.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

We present narrowband RF-photonic filters in an integrated silicon platform. Using Brillouin interactions, the filters yield narrowband (∼MHZ) filter bandwidths with high signal rejection, and demonstrate tunability over a wide (∼GHz) frequency range.

More Details

Gamma radiation effects on passive silicon photonic waveguides using phase sensitive methods

Optics Express

Boynton, Nicholas; Gehl, M.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Dodd, Paul E.; Swanson, Scot; Trotter, Douglas; DeRose, Christopher T.; Lentine, Anthony L.

Passive silicon photonic waveguides are exposed to gamma radiation to understand how the performance of silicon photonic integrated circuits is affected in harsh environments such as space or high energy physics experiments. The propagation loss and group index of the mode guided by these waveguides is characterized by implementing a phase sensitive swept-wavelength interferometric method. We find that the propagation loss associated with each waveguide geometry explored in this study slightly increases at absorbed doses of up to 100 krad (Si). The measured change in group index associated with the same waveguide geometries is negligibly changed after exposure. Additionally, we show that the post-exposure degradation of these waveguides can be improved through heat treatment.

More Details

Backscatter-Immune Injection-Locked Brillouin Laser in Silicon

Physical Review Applied

Otterstrom, Nils T.; Gertler, Shai; Zhou, Yishu; Kittlaus, Eric A.; Behunin, Ryan O.; Gehl, M.; Starbuck, Andrew L.; Dallo, Christina M.; Pomerene, Andrew P.; Trotter, Douglas C.; Lentine, Anthony L.; Rakich, Peter T.

As self-sustained oscillators, lasers possess the unusual ability to spontaneously synchronize. These nonlinear dynamics are the basis for a simple yet powerful stabilization technique known as injection locking, in which a laser's frequency and phase can be controlled by an injected signal. Because of its inherent simplicity and favorable noise characteristics, injection locking has become a workhorse for coherent amplification and high-fidelity signal synthesis in applications ranging from precision atomic spectroscopy to distributed sensing. Within integrated photonics, however, these injection-locking dynamics remain relatively untapped - despite significant potential for technological and scientific impact. Here, we demonstrate injection locking in a silicon photonic Brillouin laser. Injection locking of this monolithic device is remarkably robust, allowing us to tune the laser emission by a significant fraction of the Brillouin gain bandwidth. Harnessing these dynamics, we demonstrate amplification of small signals by more than 23 dB. Moreover, we demonstrate that the injection-locking dynamics of this system are inherently nonreciprocal, yielding unidirectional control and backscatter immunity in an all-silicon system. This device physics opens the door to strategies for phase-noise reduction, low-noise amplification, and backscatter immunity in silicon photonics.

More Details

A COLD ATOM INTERFEROMETRY SENSOR PLATFORM BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory W.; Kindel, William K.; Little, Bethany J.; Rosenthal, Randy R.; Wendt, Joel R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.; Biedermann, Grant B.

Abstract not provided.

A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator

Optics Express

Boynton, Nicholas; Cai, Hong; Gehl, M.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Trotter, Douglas C.; Friedmann, Thomas A.; Derose, Christopher T.; Lentine, Anthony L.

Silicon photonics is a platform that enables densely integrated photonic components and systems and integration with electronic circuits. Depletion mode modulators designed on this platform suffer from a fundamental frequency response limit due to the mobility of carriers in silicon. Lithium niobate-based modulators have demonstrated high performance, but the material is difficult to process and cannot be easily integrated with other photonic components and electronics. In this manuscript, we simultaneously take advantage of the benefits of silicon photonics and the Pockels effect in lithium niobate by heterogeneously integrating silicon photonic-integrated circuits with thin-film lithium niobate samples. We demonstrate the most CMOS-compatible thin-film lithium niobate modulator to date, which has electro-optic 3 dB bandwidths of 30.6 GHz and half-wave voltages of 6.7 V×cm. These modulators are fabricated entirely in CMOS facilities, with the exception of the bonding of a thin-film lithium niobate sample post fabrication, and require no etching of lithium niobate.

More Details

DEPLOYABLE COLD ATOM INTERFEROMETRY SENSOR PLATFORMS BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; Biedermann, Grant B.; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory W.; Kindel, Will K.; Little, Bethany J.; Rosenthal, Randy R.; Wendt, J.R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.

Abstract not provided.

TICTOC: Compact Atomic Clock with Integrated Photonics

Ivory, Megan K.; Ivory, Megan K.; Gehl, M.; Gehl, M.; Setzer, William J.; Setzer, William J.; McGuinness, Hayden J.; McGuinness, Hayden J.; Haltli, Raymond A.; Haltli, Raymond A.; Blain, Matthew G.; Blain, Matthew G.; Stick, Daniel L.; Stick, Daniel L.; Parazzoli, Lambert P.; Parazzoli, Lambert P.

Atomic clocks are precision timekeeping devices that form the basis for modern communication and navigation. While many atomic clocks are room-sized systems requiring bulky free space optics and detectors, the Trapped-lon Clock using Technology-On-Chip (TICTOC) project integrates these components into Sandia's existing surface trap technology via waveguides for beam delivery and avalanche photodiodes for light detection. Taking advantage of a multi-ensemble clock interrogation approach, we expect to achieve record time stability (< 1 ns error per year) in a compact (< /1 2 L) clock. Here, we present progress on the development of the integrated devices and recent trapped ion demonstrations.

More Details

A heterogeneously integrated silicon photonic/lithium niobate platform for RF photonics

AVFOP 2019 - Avionics and Vehicle Fiber-Optics and Photonics Conference

Boynton, Nicholas; Cai, Hong; Gehl, M.; Arterburn, Shawn C.; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana; Trotter, Douglas C.; Friedmann, Thomas A.; Lentine, Anthony L.; DeRose, Christopher T.

We present a 30 GHz heterogeneously integrated silicon photonic/lithium niobate Mach-Zehnder modulator simultaneously utilizing the strong Pockels effect in LiNbO3 while also taking advantage of the ability for photonic/electronic integration and mass production associated with silicon photonics. Aside from the final step of bonding the LiNbO3, this modulator can be entirely fabricated using CMOS facilities.

More Details

Photonic integrated circuits for simultaneous channelization and downconversion

AVFOP 2019 - Avionics and Vehicle Fiber-Optics and Photonics Conference

Yang, Benjamin B.; Lovelace, Brandon; Wier, Brian R.; Campbell, Jacob; Bolding, Mark; Chan, Cheong W.; Vinson, J.G.; Muthuchamy, Tarun; Bhattacharjea, Rajib; Harris, T.R.; Davis, Kyle; Stark, Andrew; Ward, Christopher; Bottenfield, Christian; Ralph, Stephen E.; Gehl, M.; Kodigala, Ashok; Starbuck, Andrew; Dallo, Christina; Pomerene, Andrew; Trotter, Doug; Lentine, Anthony L.

A compact radio frequency (RF) photonic receiver consisting of several photonic integrated circuits (PIC) that performs channelization and simultaneously downconverts the signal is described. A technique is also presented to adjust the phase shifters of the arrayed waveguide grating channelizer without direct phase measurements.

More Details

Phase optimization of a silicon photonic two-dimensional electro-optic phased array

Optics InfoBase Conference Papers

Gehl, M.; Hoffman, Galen H.; Davids, Paul D.; Starbuck, Andrew L.; Dallo, Christina M.; Barber, Zeb; Kadlec, Emil; Mohan, R.K.; Crouch, Stephen; Long, Christopher M.

Phase errors in large optical phased arrays degrade beam quality and must be actively corrected. Using a novel, low-power electro-optic design with matched pathlengths, we demonstrate simplified optimization and reduced sensitivity to wavelength and temperature.

More Details

Accurate photonic waveguide characterization using an arrayed waveguide structure

Optics Express

Gehl, M.; Boynton, Nicholas; Dallo, Christina M.; Pomerene, Andrew P.; Starbuck, Andrew L.; Hood, Dana H.; Trotter, Douglas C.; Lentine, Anthony L.; DeRose, Christopher T.

Measurement uncertainties in the techniques used to characterize loss in photonic waveguides becomes a significant issue as waveguide loss is reduced through improved fabrication technology. Typical loss measurement techniques involve environmentally unknown parameters such as facet reflectivity or varying coupling efficiencies, which directly contribute to the uncertainty of the measurement. We present a loss measurement technique, which takes advantage of the differential loss between multiple paths in an arrayed waveguide structure, in which we are able to gather statistics on propagation loss from several waveguides in a single measurement. This arrayed waveguide structure is characterized using a swept-wavelength interferometer, enabling the analysis of the arrayed waveguide transmission as a function of group delay between waveguides. Loss extraction is only dependent on the differential path length between arrayed waveguides and is therefore extracted independently from on and off-chip coupling efficiencies, which proves to be an accurate and reliable method of loss characterization. This method is applied to characterize the loss of the silicon photonic platform at Sandia Labs with an uncertainty of less than 0.06 dB/cm.

More Details

Photonic design parameters for AWG-based RF channelized receivers

Optics InfoBase Conference Papers

Davis, Kyle; Stark, Andrew; Yang, Benjamin; Lentine, Anthony L.; DeRose, Christopher T.; Gehl, M.

An 11-channel 1-GHz bandwidth silicon photonic AWG was fabricated and measured in the lab. Two photonic architectures are presented: (1) RF-envelope detector, and (2) RF downconvertor for digital systems. The RF-envelope detector architecture was modeled based on the demonstrated AWG characteristics to determine estimated system-level RF receiver performance.

More Details

Active phase correction of high resolution silicon photonic arrayed waveguide gratings

Optics Express

Gehl, M.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; DeRose, C.

Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

More Details

Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures

2016 Conference on Lasers and Electro-Optics, CLEO 2016

Gehl, M.; Long, C.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Wright, J.; Melgaard, S.; Lentine, Anthony L.; Derose, C.

We demonstrate the operation of silicon micro-disk modulators at temperatures as low as 3.8K. We characterize the steady-state and high-frequency performance and look at the impact of doping concentration.

More Details

Active phase correction of compact, high resolution silicon photonic arrayed waveguide gratings

2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, AVFOP 2016

Gehl, M.; Trotter, D.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; Derose, C.

We demonstrate compact silicon photonic arrayed waveguide gratings with channel spacing down to 1 GHz using active phase correction. The relative phase of each path within the device is directly measured using an interferometer, and two methods of phase optimization are implemented and compared.

More Details

Superconductivity in epitaxially grown self-assembled indium islands: Progress towards hybrid superconductor/semiconductor optical sources [Invited]

Journal of the Optical Society of America B: Optical Physics

Gehl, M.; Gibson, Ricky; Zandbergen, Sander; Keiffer, Patrick; Sears, Jasmine; Khitrova, Galina

Currently, superconducting qubits lead the way in potential candidates for quantum computing. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. One promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors, with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductors and semiconductors is the next obvious step for improving these hybrid systems. Here, we report on our observation of superconductivity in a 2.3 m diameter self-assembled indium structure grown epitaxially on the surface of a semiconductor material.

More Details
43 Results
43 Results