Publications

85 Results
Skip to search filters

Developing a high-speed terahertz imaging system based on parametric upconversion imaging for penetrative sensing

White, Logan W.; Pickett, Lyle M.; Manin, Julien L.

Imaging using THz waves has been a promising option for penetrative measurements in environments that are opaque to visible wavelengths. However, available THz imaging systems have been limited to relatively low frame rates and cannot be applied to study fast dynamics. This work explores the use of upconversion imaging techniques based on nonlinear optics to enable wavelength-flexible high frame rate THz imaging. UpConversion Imaging (UCI) uses nonlinear conversion techniques to shift the THz wavelengths carrying a target image to shorter visible or near-IR wavelengths that can be detected by available high-speed cameras. This report describes the analysis methodology used to design a prototype high-rate THz UCI system and gives a detailed explanations of the design choices that were made. The design uses a high-rate pulse-burst laser system to pump both THz generation and THz upconversion detection, allowing for scaling to acquisition rates in excess of 10 kHz. The design of the prototype system described in this report has been completed and all necessary materials have been procured. Assembly and characterization testing is on-going at the submission of this report. This report proposes future directions for work on high-rate THz UCI and potential applications of future systems.

More Details

Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors

Fuel

Oh, Heechang; Hwang, Joonsik; Pickett, Lyle M.; Han, Donghee

Current state-of-the-art gasoline direct-injection (GDI) engines use multiple injections as one of the key technologies to improve exhaust emissions and fuel efficiency. For this technology to be successful, secured adequate control of fuel quantity for each injection is mandatory. However, nonlinearity and variations in the injection quantity can deteriorate the accuracy of fuel control, especially with small fuel injections. Therefore, it is necessary to understand the complex injection behavior and to develop a predictive model to be utilized in the development process. This study presents a methodology for rate of injection (ROI) and solenoid voltage modeling using artificial neural networks (ANNs) constructed from a set of Zeuch-style hydraulic experimental measurements conducted over a wide range of conditions. A quantitative comparison between the ANN model and the experimental data shows that the model is capable of predicting not only general features of the ROI trend, but also transient and non-linear behaviors at particular conditions. In addition, the end of injection (EOI) could be detected precisely with a virtually generated solenoid voltage signal and the signal processing method, which applies to an actual engine control unit. A correlation between the detected EOI timings calculated from the modeled signal and the measurement results showed a high coefficient of determination.

More Details

Flow visualisation in real-size optical injectors of conventional, additised, and renewable gasoline blends

Energy Conversion and Management

Heidari-Koochi, Milad; Karathanassis, Ioannis K.; Koukouvinis, Phoevos; Hwang, Joonsik; Pickett, Lyle M.; Spivey, David; Gavaises, Manolis

Research on renewable and alternative fuels is crucial for improving the energy and environmental efficiency of modern gasoline internal combustion engines. To highlight the influence of fuel rheological and thermodynamic properties on phase change and atomisation processes, three types of gasoline blends were tested. More specifically, the campaign comprised a reference gasoline, an ethanol/gasoline blend (10% v/v) representative of renewable fuels, and an additised gasoline sample treated with viscoelasticity-inducing agents. High-speed imaging of the transient two-phase flow field arising in the internal geometry and the near-nozzle spray region of gasoline injectors was performed employing Diffuse Backlight Illumination. The metallic body of a commercial injector was modified to fit transparent tips realising two nozzle layouts, namely a two-hole real size model resembling the Engine Combustion Network spray G injector and an enraged replica with an offset hole. Experiments were conducted at realistic operating conditions comprising an injection pressure of 100 bar and ambient pressures in the range of 0.1–6.0 bar to cover the entire range of chamber pressures prevailing in Gasoline Direct Injection engines. The action of viscoelastic additives was verified to have a suppressive effect on in-nozzle cavitation (6% reduction in cavitation extent), while also enhancing spray atomisation at flash-boing conditions, in a manner resembling the more volatile gasoline/ethanol blends. Finally, persisting liquid ligaments were found to form after the end of injection for the additised sample, owing to the surfactant nature of the additives.

More Details

Large-eddy simulation of laser-ignited direct injection gasoline spray for emission control

Energies

Tagliante-Saracino, Fabien R.; Nguyen, Tuan M.; Pickett, Lyle M.; Sim, Hyung S.

Large-Eddy Simulations (LES) of a gasoline spray, where the mixture was ignited rapidly during or after injection, were performed in comparison to a previous experimental study with quantitative flame motion and soot formation data [SAE 2020-01-0291] and an accompanying Reynolds-Averaged Navier–Stokes (RANS) simulation at the same conditions. The present study reveals major shortcomings in common RANS combustion modeling practices that are significantly improved using LES at the conditions of the study, specifically for the phenomenon of rapid ignition in the highly turbulent, stratified mixture. At different ignition timings, benchmarks for the study include spray mixing and evaporation, flame propagation after ignition, and soot formation in rich mixtures. A comparison of the simulations and the experiments showed that the LES with Dynamic Structure turbulence were able to capture correctly the liquid penetration length, and to some extent, spray collapse demonstrated in the experiments. For early and intermediate ignition timings, the LES showed excellent agreement to the measurements in terms of flame structure, extent of flame penetration, and heat-release rate. However, RANS simulations (employing the common G-equation or well-stirred reactor) showed much too rapid flame spread and heat release, with connections to the predicted turbulent kinetic energy. With confidence in the LES for predicted mixture and flame motion, the predicted soot formation/oxidation was also compared to the experiments. The soot location was well captured in the LES, but the soot mass was largely underestimated using the empirical Hiroyasu model. An analysis of the predicted fuel–air mixture was used to explain different flame propagation speeds and soot production tendencies when varying ignition timing.

More Details

Image processing methods for Rayleigh scattering measurements of diesel spray mixing at high repetition rate

Applied Physics B: Lasers and Optics

Manin, Julien L.; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.

This work describes the diagnostic implementation and image processing methods to quantitatively measure diesel spray mixing injected into a high-pressure, high-temperature environment. We used a high-repetition-rate pulse-burst laser developed in-house, a high-speed CMOS camera, and optimized the optical configuration to capture Rayleigh scattering images of the vaporized fuel jets inside a constant volume chamber. The experimental installation was modified to reduce reflections and flare levels to maximize the images’ signal-to-noise ratios by anti-reflection coatings on windows and surfaces, as well as series of optical baffles. Because of the specificities of the high-speed system, several image processing techniques had to be developed and implemented to provide quantitative fuel concentration measurements. These methods involve various correction procedures such as camera linearity, laser intensity fluctuation, dynamic background flare, as well as beam-steering effects. Image inpainting was also applied to correct the Rayleigh scattering signal from large scatterers (e.g. particulates). The experiments demonstrate that applying planar laser Rayleigh scattering at high repetition rate to quantitatively resolve the mixing of fuel and ambient gases in diesel jets is challenging, but possible. The thorough analysis of the experimental uncertainty and comparisons to past data prove that such measurements can be accurate, whilst providing valuable information about the mixing processes of high-pressure diesel jets.

More Details

Fuel Spray Mixing and Wall Interaction

Pickett, Lyle M.

All future high-efficiency engines will have fuel directly sprayed into the engine cylinder. Engine developers agree that a major barrier to the rapid development and design of these high-efficiency, clean engines is the lack of accurate fuel spray computational fluid dynamics (CFD) models. The spray injection process largely determines the fuel–air mixture processes in the engine, which subsequently drive combustion and emissions in both direct-injection gasoline and diesel systems, particularly at cold-start conditions when aftertreatment is ineffective. Engines must be tolerant to a range of fuels, and there must be an understanding of how specific fuel properties affect the spray mixing and evaporation processes to intentionally create better fuels and better injectors. More predictive spray combustion models will enable rapid design and optimization of future high-efficiency engines, providing more affordable vehicles and saving fuel.

More Details

Detailed measurements of transient two-stage ignition and combustion processes in high-pressure spray flames using simultaneous high-speed formaldehyde PLIF and schlieren imaging

Proceedings of the Combustion Institute

Sim, Hyung S.; Maes, Noud; Weiss, Lukas; Pickett, Lyle M.; Skeen, Scott A.

The low- and high-temperature ignition and combustion processes in a high-pressure spray flame of n-dodecane were investigated using simultaneous 50-kHz formaldehyde (HCHO) planar laser-induced fluorescence (PLIF) and 100-kHz schlieren imaging. PLIF measurements were facilitated through the use of a pulse-burst-mode Nd:YAG laser, and the high-speed HCHO PLIF signal was imaged using a non-intensified CMOS camera with dynamic background emission correction. The experiments were conducted in the Sandia constant-volume preburn vessel equipped with a new Spray A injector. The effects of ambient conditions on the ignition delay times of the two-stage ignition events, HCHO structures, and lift-off length values were examined. Consistent with past studies of traditional Spray A flames, the formation of HCHO was first observed in the jet peripheries where the equivalence ratio (Φ) is expected to be leaner and hotter and then grows in size and in intensity downstream into the jet core where Φ is expected to be richer and colder. The measurements showed that the formation and propagation of HCHO from the leaner to richer region leads to high-temperature ignition events, supporting the identification of a phenomenon called “cool-flame wave propagation” during the transient ignition process. Subsequent high-temperature ignition was found to consume the previously formed HCHO in the jet head, while the formation of HCHO persisted in the fuel-rich zone near the flame base over the entire combustion period.

More Details

Combined visualisation of cavitation and vortical structures in a real-size optical diesel injector

Experiments in Fluids

Karathanassis, I.K.; Hwang, J.; Koukouvinis, P.; Pickett, Lyle M.; Gavaises, M.

Abstract: A high-speed flow visualisation set-up comprising of combined diffuse backlight illumination (DBI) and schlieren imaging has been developed to illustrate the highly transient, two-phase flow arising in a real-size optical fuel injector. The different illumination nature of the two techniques, diffuse and parallel light respectively, allows for the capturing of refractive-index gradients due to the presence of both interfaces and density gradients within the orifice. Hence, the onset of cavitation and secondary-flow motion within the sac and injector hole can be concurrently visualised. Experiments were conducted utilising a diesel injector fitted with a single-hole transparent tip (ECN spray D) at injection pressures of 700–900 bar and ambient pressures in the range of 1–20 bar. High-speed DBI images obtained at 100,000 fps revealed that the orifice, due to its tapered layout, is mildly cavitating with relatively constant cavity sheets arising mainly in regions of manufacturing imperfections. Nevertheless, schlieren images obtained at the same frame rate demonstrated that a multitude of vortices with short lifetimes arise at different scales in the sac and nozzle regions during the entire duration of the injection cycle but the vortices do not necessarily result in phase change. The magnitude and exact location of coherent vortical structures have a measurable influence on the dynamics of the spray emerging downstream the injector outlet, leading to distinct differences in the variation of its cone angle depending on the injection and ambient pressures examined. Graphic abstract: [Figure not available: see fulltext.].

More Details

Simultaneous high-speed formaldehyde PLIF and schlieren imaging of multiple injections from an ECN Spray D injector

ASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020

Maes, Noud; Sim, Hyung S.; Weiss, Lukas; Pickett, Lyle M.

The interaction of multiple injections in a diesel engine facilitates a complex interplay between freshly introduced fuel, previous combustion products, and overall combustion. To improve understanding of the relevant processes, high-speed Planar Laser-Induced Fluorescence (PLIF) with 355-nm excitation of formaldehyde and Polycyclic Aromatic Hydrocarbon (PAH) soot precursors is applied to multiple injections of n-dodecane from Engine Combustion Network Spray D, characterized by a converging 189-µm nozzle. High-speed schlieren imaging is applied simultaneously with 50-kHz PLIF excitation to visualize the spray structures, jet penetration, and ignition processes. For the first injection, formaldehyde (as an indicator of low-temperature chemistry) is first found in the jet periphery, after which it quickly propagates through the center of the jet, towards the jet head prior to high-temperature ignition. At second-stage ignition, downstream formaldehyde is consumed rapidly and upstream formaldehyde develops into a quasi-steady structure for as long as the momentum flux from the injector continues. Since the first injection in this work is relatively short, differences to a single long injection are readily observed, ultimately resulting in high-temperature combustion and PAH structures appearing farther upstream after the end of injection. For the second injection in this work, the first formaldehyde signal is significantly advanced because of the entrained high-temperature combustion products, and an obvious premixed burn event does not occur. The propensity for combustion recession after the end of the first injection changes significantly with ambient temperature, thereby affecting the level of interaction between the first- and second injection.

More Details

Spray Combustion and Soot Formation

Manin, Julien L.; Pickett, Lyle M.

Mitigating particulate matter (PM) emissions while simultaneously controlling nitrogen oxide and hydrocarbon emissions is critical for both gasoline and diesel engines. The problem is especially critical during cold-start cycles where aftertreatment devices are less effective. Understanding how liquid sprays and films form PM and designing to change the outcome requires advanced combustion concepts developed through joint experimental and computational efforts. However, existing spray and soot computational models are oversimplified and non-physical, and are therefore unable to reliably capture quantitative or even qualitative trends over a wide range of engine operating conditions. This task involves the development and application of advanced optical diagnostics and high-pressure gas and particle sampling/analysis in unique high-temperature, high-pressure vessels to investigate spray dynamics and soot formation with the objective of providing fundamental understanding about soot processes under relevant engine conditions to aid the development of improved soot models for commercial CFD codes

More Details

A thermally-limited bubble growth model for the relaxation time of superheated fuels

International Journal of Heat and Mass Transfer

Arienti, Marco A.; Hwang, Joonsik H.; Pickett, Lyle M.; Shekhawat, Yajuvendra

We propose a novel approach to evaluate the relaxation time of vapor bubble growth in the context of the flash boiling of a superheated liquid. In alternative to the empirical correlation derived from superheated water experiments almost fifty years ago, the new model describes the thermally-dominated growth of vapor bubbles in terms that are dependent on the local Jakob number (the ratio of sensible heat to latent heat during phase change) and the number density of vapor bubbles. The model is tested by plugging the resulting relaxation time into the Homogenous Relaxation Model (HRM). Flash-boiling simulations carried out with HRM are compared with n-pentane (C5H12) injection and boil-off experiments conducted with a real-size, axial-hole, transparent gasoline injector discharging into a constant-pressure vessel. The long-distance microscopy images from the experiments, processed to derive the projected liquid volume (PLV) of the spray, provide a unique set of time-resolved validation data for direct fuel injection simulations. At conditions ranging from flaring to mild and minimal flash boiling, we show that switching to the new relaxation time improves the agreement with the measured PLV profiles with respect to the standard empirical model. Particularly at flaring conditions, the predicted increase in gas cooling caused by rapid vapor production is shown to be more consistent with the observed boil-off.

More Details

Spray penetration, combustion, and soot formation characteristics of the ECN Spray C and Spray D injectors in multiple combustion facilities

Applied Thermal Engineering

Maes, Noud; Skeen, Scott A.; Bardi, Michele; Fitzgerald, Russell P.; Malbec, Louis M.; Bruneaux, Gilles; Pickett, Lyle M.; Yasutomi, Koji; Martin, Glen

In a collaborative effort to identify key aspects of heavy-duty diesel injector behavior, the Engine Combustion Network (ECN) Spray C and Spray D injectors were characterized in three independent research laboratories using constant volume pre-burn vessels and a heated constant-pressure vessel. This work reports on experiments with nominally identical injectors used in different optically accessible combustion chambers, where one of the injectors was designed intentionally to promote cavitation. Optical diagnostic techniques specifically targeted liquid- and vapor-phase penetration, combustion indicators, and sooting behavior over a large range of ambient temperatures—from 850 K to 1100 K. Because the large-orifice injectors employed in this work result in flame lengths that extend well beyond the optical diagnostics’ field-of-view, a novel method using a characteristic volume is proposed for quantitative comparison of soot under such conditions. Further, the viability of extrapolating these measurements downstream is considered. The results reported in this publication explain trends and unique characteristics of the two different injectors over a range of conditions and serve as calibration targets for numerical efforts within the ECN consortium and beyond. Building on agreement for experimental results from different institutions under inert conditions, apparent differences found in combustion indicators and sooting behavior are addressed and explained. Ignition delay and soot onset are correlated and the results demonstrate the sensitivity of soot formation to the major species of the ambient gas (i.e., carbon dioxide, water, and nitrogen in the pre-burn ambient versus nitrogen only in the constant pressure vessel) when holding ambient oxygen volume percent constant.

More Details

Combined Experimental/Numerical Study of the Soot Formation Process in a Gasoline Direct-Injection Spray in the Presence of Laser-Induced Plasma Ignition

SAE Technical Papers

Tagliante-Saracino, Fabien R.; Sim, Hyung S.; Pickett, Lyle M.; Nguyen, Tuan M.; Skeen, Scott

Combustion issued from an eight-hole, direct-injection spray was experimentally studied in a constant-volume pre-burn combustion vessel using simultaneous high-speed diffused back-illumination extinction imaging (DBIEI) and OH∗ chemiluminescence. DBIEI has been employed to observe the liquid-phase of the spray and to quantitatively investigate the soot formation and oxidation taking place during combustion. The fuel-air mixture was ignited with a plasma induced by a single-shot Nd:YAG laser, permitting precise control of the ignition location in space and time. OH∗ chemiluminescence was used to track the high-temperature ignition and flame. The study showed that increasing the delay between the end of injection and ignition drastically reduces soot formation without necessarily compromising combustion efficiency. For long delays between the end of injection and ignition (1.9 ms) soot formation was eliminated in the main downstream charge of the fuel spray. However, poorly atomized and large droplets formed at the end of injection (dribble) eventually do form soot near the injector even when none is formed in the main charge. The quantitative soot measurements for these spray and ignition scenarios, resolved in time and space, represents a significant new achievement. Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess spray mixing and combustion. An analysis of the predicted fuel-air mixture in key regions, defined based upon experimental observations, was used to explain different flame propagation speeds and soot production tendencies when varying ignition timing. The mixture analysis indicates that soot production can be avoided if the flame propagates into regions where the equivalence ratio (φ) is already below 2. Reactive RANS simulations have also been performed, but with a poor match against the experiment, as the flame speed and heat-release rate are largely over estimated. This modeling weakness appears related to a very high level of turbulent viscosity predicted for the high-momentum spray in the RANS simulations, which is an important consideration for modeling ignition and flame propagation in mixtures immediately created by the spray.

More Details

Transient cavitation in transparent diesel injectors

ICLASS 2018 - 14th International Conference on Liquid Atomization and Spray Systems

Manin, J.; Pickett, Lyle M.; Yasutomi, K.

The flow and cavitation behavior inside fuel injectors is known to affect spray development, mixing and combustion characteristics. While diesel fuel injectors with converging and hydro-eroded holes are generally known to limit cavitation and feature higher discharge coefficients during the steady period of injection, less is known about the flow during transients of needle opening and closing. Multiple injection strategies involve short injections, multiplying the transients and giving them a growing importance as part of the fuel delivery process. In this study, single-hole transparent nozzles were manufactured with the same hole inlet radius and diameter as the Engine Combustion Network Spray D nozzle, mounted to a modified version of a common-rail Spray A injector body and needle. The transients of needle opening and closing were visualized with stereoscopic high-speed microscopy at injection pressures relevant to modern diesel engines. Time-resolved sac pressure was extracted via elastic deformation analysis of the transparent nozzles. Sources of cavitation were observed and tracked, enabling the identification of a gas exchange process after the end of injection with ingestion of chamber gas into the sac and orifice. We observed that the gas exchange contributed widely to disrupting the start of injection and outlet flow during the following injection event.

More Details

Effect of pressure cycling on gas exchange in a transparent fuel injector

SAE Technical Papers

Abers, Paul M.; Cenker, Emre; Yasutomi, Koji; Hwang, Joonsik H.; Pickett, Lyle M.

Gas ingested into the sac of a fuel injector after the injector needle valve closes is known to have crucial impacts on initial spray formation and plume growth in a following injection cycle. Yet little research has been attempted to understand the fate sac gases during pressure expansion and compression typical of an engine. This study investigated cavitation and bubble processes in the sac including the effect of chamber pressure decrease and increase consistent with an engine cycle. A single axial-hole transparent nozzle based on the Engine Combustion Network (ECN) Spray D nozzle geometry was mounted in a vessel filled with nitrogen, and the nitrogen gas pressure was cycled after the end of injection. Interior nozzle phenomena were visualized by high-speed longdistance microscopy with a nanosecond pulsed LED back-illumination. Experimental results showed that the volume of gas in the sac after the needle closes depends upon the vessel gas pressure. Higher back pressure results in less cavitation and a smaller volume of non-condensable gas in the sac. But a pressure decrease mimicking the expansion stroke causes the gas within the sac to expand significantly, proportional to the pressure decrease, while also evacuating liquid in front of the bubble. The volume of the gas in the sac increases during the expansion cycle due both to isothermal expansion as well as desorption of inherent dissolved gas in the fuel. During the compression cycle, the volume of bubbles decreases and additional non-condensable ambient gas is ingested into the sac. As the liquid fuel is nearly incompressible, the volume of both liquid and gas essentially remains constant during compression.

More Details

Diesel injector elasticity effects on internal nozzle flow

SAE Technical Papers

Yasutomi, Koji; Hwang, Joonsik H.; Manin, Julien; Pickett, Lyle M.; Arienti, Marco A.; Daly, Shane; Skeen, Scott

Numerical simulations of internal nozzle flow that include transient needle valve motion offer the potential to better predict spray penetration, mixing and liquid breakup. For example, the level of gas initially inside the sac and holes, as well as the rate of needle movement, influence the initial fuel delivery rate and spray development, thereby affecting ignition position and combustion. In this study, needle movement and gas exchange inside operating transparent fuel injectors are imaged at high speed, and CFD simulations with fine resolution (2-micrometers) in the needle-seat area are performed to understand the impact of needle movement and initial gas in the sac on ramp-up in rate of injection. The injector bodies and sac geometries are replicas of the Engine Combustion Network Spray A and Spray D injectors. Imaging shows that gas is ingested into the injector at the beginning of needle movement, an unexpected results given the high injection pressure above the needle valve. Finite element analysis simulations accounting for the elastic properties of the metal seat and needle are performed to explain this result. As forces on the needle and seat are relieved at the beginning of injection, the sac volume enlarges while contact between sealing surfaces remains. Needle and nozzle wall measurements confirm that the needle tip may move roughly 5-10 micrometers before the passage opens at the needle seat to allow flow and pressurization of the sac. Measured needle movement from an experiment (optical or X-ray) must be corrected to achieve a different "needle gap" profile for simulations with no elasticity. This elasticity-corrected profile should be used for CFD simulations, otherwise, early and incorrect spray development will be predicted. Simulations with the corrected needle-lift profile and gas initially within the sac show that the mass flow rate at the start of injection includes cycling in flow rate caused primarily by sac pressure fluctuations, which are recommended for future Lagrangian CFD simulations.

More Details

Inter-plume aerodynamics for gasoline spray collapse

International Journal of Engine Research

Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.

The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.

More Details

Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

Applied Energy

Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; Gehmlich, Ryan K.; Pickett, Lyle M.; Skeen, Scott A.

Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). The results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.

More Details

On the transcritical mixing of fuels at diesel engine conditions

Fuel

Crua, Cyril; Manin, Julien; Pickett, Lyle M.

Whilst the physics of both classical evaporation and supercritical fluid mixing are reasonably well characterized and understood in isolation, little is known about the transition from one to the other in the context of liquid fuel systems. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models. To address this issue we performed systematic measurements using high-speed long-distance microscopy, for three single-component fuels (n-heptane, n-dodecane, n-hexadecane), into gas at elevated temperatures (700–1200 K) and pressures (2–11 MPa). We describe these high-speed visualizations and the time evolution of the transition from liquid droplet to fuel vapour at the microscopic level. The measurements show that the classical atomization and vaporisation processes do shift to one where surface tension forces diminish with increasing pressure and temperature, but the transition to diffusive mixing does not occur instantaneously when the fuel enters the chamber. Rather, subcritical liquid structures exhibit surface tension in the near-nozzle region and then, after time surrounded by the hot ambient gas and fuel vapour, undergo a transition to a dense miscible fluid. Although there was clear evidence of surface tension and primary atomization for n-dodecane and n-hexadecane for a period of time at all the above conditions, n-heptane appeared to produce a supercritical fluid from the nozzle outlet when injected at the most elevated conditions (1200 K, 10 MPa). This demonstrates that the time taken by a droplet to transition to diffusive mixing depends on the pressure and temperature of the gas surrounding the droplet as well as the fuel properties. We summarise our observations into a phenomenological model which describes the morphological evolution and transition of microscopic droplets from classical evaporation through a transitional mixing regime and towards diffusive mixing, as a function of operating conditions. We provide criteria for these regime transitions as reduced pressure–temperature correlations, revealing the conditions where transcritical mixing is important to diesel fuel spray mixing.

More Details

Understanding the ignition mechanism of high-pressure spray flames

Proceedings of the Combustion Institute

Dahms, Rainer N.; Paczko, Günter A.; Skeen, Scott A.; Pickett, Lyle M.

A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The combined analysis established a conceptual model for turbulent ignition in high-pressure spray flames which is based on a set of identified characteristic time scales. The suddenly forming steep gradients from successful high-temperature ignition initiate the propagation of a turbulent flame. It rapidly ignites the entire spray head on time scales which are generally significantly smaller than the corresponding cool flame wave time scales.

More Details

Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

Combustion and Flame

O'Connor, Jacqueline; Musculus, Mark P.; Pickett, Lyle M.

This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors' previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strong function of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. The fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.

More Details

Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

Combustion and Flame

Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; Senecal, Peter K.; Skeen, Scott A.; Manin, Julien; Pickett, Lyle M.

An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier-Stokes (RANS) predictions. The LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. However, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.

More Details

Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.; Patterson, Brian D.; Ruggles, Adam J.; Skeen, Scott A.; Manin, Julien L.; Huang, Erxiong H.; Cicone, Dave J.; Sphicas, Panos S.

In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

More Details

Visualization of Ignition Processes in High-Pressure Sprays with Multiple Injections of n-Dodecane

SAE International Journal of Engines

Skeen, Scott A.; Manin, Julien L.; Pickett, Lyle M.

We investigate the mixing, penetration, and ignition characteristics of high-pressure n-dodecane sprays having a split injection schedule (0.5/0.5 dwell/0.5 ms) in a pre-burn combustion vessel at ambient temperatures of 750 K, 800 K and 900 K. High-speed imaging techniques provide a time-resolved measure of vapor penetration and the timing and progression of the first- and second-stage ignition events. Simultaneous single-shot planar laser-induced fluorescence (PLIF) imaging identifies the timing and location where formaldehyde (CH2O) is produced from first-stage ignition and consumed following second-stage ignition. At the 900-K condition, the second injection penetrates into high-temperature combustion products remaining in the near-nozzle region from the first injection. Consequently, the ignition delay for the second injection is shorter than that of the first injection (by a factor of two) and the second injection ignites at a more upstream location near the liquid length. At the 750 K and 800 K conditions, high-temperature ignition does not occur in the near-nozzle region after the end of the first injection, though formaldehyde remains from first-stage reactions. Under these conditions, the second injection penetrates into cool-flame products that are slightly elevated in temperature (∼100 K) relative to the ambient. This modest temperature increase and the availability of reactive cool-flame products reduces the first- and second-stage ignition delay of the second injection by a factor of approximately two relative to the first injection. At the 750-K ambient condition, high-temperature ignition of the first injection does not occur until the second injection enriches the very fuel-lean downstream regions.

More Details

Ignition Quality Effects on Lift-Off Stabilization of Synthetic Fuels

SAE International Journal of Engines

Lequien, Guillaume; Andersson, Oivind; Skeen, Scott A.; Manin, Julien L.; Pickett, Lyle M.

The ignition and flame stabilization characteristics of two synthetic fuels, having significantly different cetane numbers, are investigated in a constant volume combustion vessel over a range of ambient conditions representative of a compression ignition engine operating at variable loads. The synthetic fuel with a cetane number of 63 (S-1) is characterized by ignition delays that are only moderately longer than n-dodecane (cetane number of 87) over a range of ambient conditions. By comparison, the synthetic fuel with a cetane number of 17 (S-2) requires temperatures approximately 300 K higher to achieve the same ignition delays. The much different ignition characteristics and operating temperature range present a scenario where the lift-off stabilization may be substantially different. At temperatures below 1000 K, the S-2 fuel undergoes a long transient stabilization phase during which the lift-off location moves as much as 15 mm upstream (i.e., toward the injector orifice) after the ignition of the first flame kernel. This behavior is much different than S-1, n-dodecane, or with conventional diesel, in which past research shows that the lift-off location stabilizes very close to the ignition location shortly after the premixed burn. The longer ignition delays for S-2 frequently result in fuel-lean mixtures at the ignition location where the spray becomes over-mixed (i.e., too fuel-lean) and the high-temperature ignition event is noticeably less robust (i.e., smaller and less intense ignition kernels) as observed by high-speed chemiluminescence imaging. High-speed chemiluminescence imaging and pressure measurements show strong evidence of cool-flame (i.e., first-stage or low-temperature) reactions prior to high-temperature ignition for S-1 while they are less evident for S-2.

More Details

Combustion Recession after End of Injection in Diesel Sprays

SAE International Journal of Engines

Knox, Benjamin W.; Genzale, Caroline L.; Pickett, Lyle M.; Garcia-Oliver, Jose M.; Vera-Tudela, Walter

This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession. The likelihood of combustion recession increases for higher ambient temperatures and oxygen concentrations, as well as for higher reactivity fuels. The likelihood of combustion recession was further linked to the characteristics of end-of-injection entrainment. A simple equation, linking equivalence ratio at the lift-off length, ϕ(LOL), with a dimensionless parameter related to the end-of-injection entrainment wave, was found to well predict the propensity for combustion recession of dodecane sprays over a wide range of experimental data and 1-D model predictions. Our results suggest that this relationship is ϕ(LOL) ∼ Deff/(αUeff)0.474, where Deff is the effective orifice diameter, αα is the end-of-injection ramp-down duration, and Ueff is the effective injection velocity.

More Details

Measurement of Liquid and Vapor Penetration of Diesel Sprays with a Variation in Spreading Angle

SAE Technical Papers

Jung, Yongjin; Manin, Julien L.; Skeen, Scott A.; Pickett, Lyle M.

The mixing field of sprays injected into high temperature and pressure environments has been observed to be tightly connected to spreading angle, therefore linking vaporization and combustion processes to the angular dispersion of the spray. Visualization of the Engine Combustion Network three-hole, Spray B diesel injector shows substantial variation in near-field spreading angle with respect to time compared to past measurements of the single-hole, Spray A injector. The source of these variations originating inside the nozzle, and the implications on mixing, evaporation, and combustion of the diesel plume, need to be understood. In this study, we characterize the ECN-target plume for a Spray B injector (Serial # 211201), which already benefits from extensive and detailed internal measurements of nozzle geometry and needle movement, while comparing to the single-hole Spray A with the same type of detailed geometry and understanding. We measure the spreading angle, liquid penetration, and vapor penetration with respect to time of the spray of interest using standardized diagnostics in a high-temperature, high-pressure capable optically accessible combustion chamber. High-speed Mie scattering and diffused back-illumination imaging (DBI) are applied for liquid penetration, and schlieren imaging, for vapor penetration. The measurements show that the near-field spreading angle is wide for the first 300 μs after the start of injection before dropping rapidly during a quasi-steady period and then increasing well before the end of injection. Changes in spreading angle are not coincident with needle motion throttling, suggesting more complicated internal flow transients. With DBI long-distance microscopy, a partially transparent region indicates that an intact liquid core at the nozzle exit occurs frequently in quasi-steady period, which is coincident with a narrow spreading angle. The liquid penetration measured by DBI is comparable to that of Mie-scattering using criteria and standardization already established by the ECN community for Spray A. The Spray B liquid and vapor penetration rates are slower than that of Spray A, showing responses connected to the transient spreading angle.

More Details

Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames

Proceedings of the Combustion Institute

Skeen, Scott A.; Manin, Julien L.; Pickett, Lyle M.

We applied simultaneous schlieren and formaldehyde (CH2O) planar laser-induced fluorescence (PLIF) imaging to investigate the low- and high-temperature auto-ignition events in a high-pressure (60 bar) spray of n-dodecane. High-speed (150 kHz) schlieren imaging allowed visualization of the temporal progression of the fuel vapor penetration as well as the low- and high-temperature ignition events, while formaldehyde fluorescence was induced by a pulsed (7-ns), 355-nm planar laser sheet at a select time during the same injection. Fluorescence from polycyclic aromatic hydrocarbons (PAH) was also observed and was distinguished from formaldehyde PLIF both temporally and spatially. A characteristic feature previously recorded in schlieren images of similar flames, in which refractive index gradients significantly diminish, has been confirmed to be coincident with large formaldehyde fluorescence signal during low-temperature ignition. Low-temperature reactions initiate near the radial periphery of the spray on the injector side of the spray head. Formaldehyde persists on the injector side of the lift-off length and forms rapidly near the injector following the end of injection. The consumption of formaldehyde coincides with the position and timing of high-temperature ignition and low-density zones that are clearly evident in the schlieren imaging. After the end of injection, the formaldehyde that formed on the injector side of the lift-off length is consumed as a high-temperature ignition front propagates back toward the injector tip.

More Details

Advanced Diagnostics for High Pressure Spray Combustion

Skeen, Scott A.; Manin, Julien L.; Pickett, Lyle M.

The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

More Details

Quantitative spatially resolved measurements of total radiation in high-pressure spray flames

SAE Technical Papers

Skeen, Scott; Manin, Julien L.; Pickett, Lyle M.; Dalen, Kristine; Ivarsson, Anders

Quantitative measurements of the total radiative heat transfer from high-pressure diesel spray flames under a range of conditions will enable engine modelers to more accurately understand and predict the effects of advanced combustion strategies on thermal loads and efficiencies. Moreover, the coupling of radiation heat transfer to soot formation processes and its impact on the temperature field and gaseous combustion pollutants is also of great interest. For example, it has been shown that reduced soot formation in diesel engines can result in higher flame temperatures (due to less radiative cooling) leading to greater NOx emissions. Whereas much of the previous work in research engines has evaluated radiation based on two- or three-color detection with limited spatial resolution, this work uses an imaging spectrometer in conjunction with a constant volume pre-burn vessel to quantify soot temperatures, optical thickness, and total radiation with spatial and spectral (360-700 nm) resolution along the flame axis. Sprays of n-dodecane were injected from a single hole, 90-m diameter orifice into a range of ambient temperature conditions while holding ambient density and oxygen concentration constant at 22.8 kg/m 3 and 15%, respectively. Soot surface temperatures derived by fitting a model to the spectral data were within 10 K of the stoichiometric computed adiabatic flame temperature for lower ambient temperature, lower sooting cases. As ambient temperature was increased, leading to greater soot formation, the spectrally derived peak soot temperature decreased relative to the calculated adiabatic flame temperature. For the highest ambient temperature case (1200 K), the spectrally derived soot surface temperature was more than 140 K lower than the calculated adiabatic flame temperature. Values of optical thickness, KL, were also derived by fitting the spectral data and these values were compared to extinction based KL measurements. The spectrally derived KL was within a factor of about 1.5 from the extinction based data for the higher sooting cases. Under lower sooting conditions the differences were larger. For the lowest sooting case, the radiant fraction-defined as the fraction of energy emitted by radiation relative to the chemical energy available from the fuel injection-was negligible at less than 0.01%. The highest temperature flame with the greatest optical thickness resulted in a radiant fraction of 0.46%. Copyright © 2014 SAE International.

More Details

Understanding and predicting soot generation in turbulent non-premixed jet flames

Shaddix, Christopher R.; Zhang, Jiayao Z.; Oefelein, Joseph C.; Pickett, Lyle M.

This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.

More Details

Effect of fuel volatility and ignition quality on combustion and soot formation at fixed premixing conditions

SAE International Journal of Engines

Kook, Sanghoon; Pickett, Lyle M.

This paper presents experimental results for two fuel-related topics in a diesel engine: (1) how fuel volatility affects the premixed burn and heat release rate, and (2) how ignition quality influences the soot formation. Fast evaporation of fuel may lead to more intense heat release if a higher percentage of the fuel is mixed with air to form a combustible mixture. However, if the evaporation of fuel is driven by mixing with high-temperature gases from the ambient, a high-volatility fuel will require less oxygen entrainment and mixing for complete vaporization and, consequently, may not have potential for significant heat release simply because it has vaporized. Fuel cetane number changes also cause uncertainty regarding soot formation because variable ignition delay will change levels of fuel-air mixing prior to combustion. To address these questions, experiments are performed using a constant-volume combustion chamber simulating typical low-temperature-combustion (LTC) diesel conditions. We use fuels that have the same ignition delay (and therefore similar time for premixing with air), but different fuel volatility, to assess the heat-release rate and spatial location of combustion. Under this condition, where fuel volatility is decoupled from the ignition delay, results show almost the same heat release rate and spatial location of the premixed burn. The effect of ignition quality on soot formation has also been studied while maintaining similar levels of fuel-ambient mixing prior to combustion. To achieve the same ignition delay, the high-cetane-number fuel is injected into an ambient gas at a lower temperature and vice versa. The total soot mass within the spray is measured and compared for fuels with different cetane numbers but with the same premixing level (e.g. the same ignition delay and lift-off length). Experimental results show that the combination of high cetane number and low ambient gas temperature produces lower soot than the other combination, because the ambient temperature predominantly affects soot formation.

More Details

Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging

SAE International Journal of Engines

Pickett, Lyle M.; Kook, Sanghoon; Williams, Timothy C.

Shadowgraph/schlieren imaging techniques have often been used for flow visualization of reacting and non-reacting systems. In this paper we show that high-speed shadowgraph visualization in a high-pressure chamber can also be used to identify cool-flame and high-temperature combustion regions of diesel sprays, thereby providing insight into the time sequence of diesel ignition and combustion. When coupled to simultaneous high-speed Mie-scatter imaging, chemiluminescence imaging, pressure measurement, and spatially-integrated jet luminosity measurements by photodiode, the shadowgraph visualization provides further information about spray penetration after vaporization, spatial location of ignition and high-temperature combustion, and inactive combustion regions where problematic unburned hydrocarbons exist. Examples of the joint application of high-speed diagnostics include transient non-reacting and reacting injections, as well as multiple injections. Shadowgraph and schlieren image processing steps required to account for variations of refractive index within the high-temperature combustion vessel gases are also shown.

More Details

Influence of diesel injection parameters on end-of-injection liquid length recession

SAE Technical Papers

Kook, Sanghoon; Pickett, Lyle M.; Musculus, Mark P.

Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis. Results show that an increased injection pressure correlates well with increasing liquid length recession due to an increased entrainment wave speed. Likewise, an increased nozzle size, with higher jet momentum and faster entrainment wave, enhances the liquid length recession. A low-density, high-volatility fuel does not decrease the strength of the entrainment wave; however, it decreases the steady liquid length causing the entrainment wave to reach the liquid spray tip earlier, which ultimately results in faster liquid length recession. A slow ramp down in injection rate causes a weaker entrainment wave so that the liquid length recession occurs even prior to injector close.

More Details

Summary report : universal fuel processor

Staiger, Chad S.; Cornelius, Christopher J.; Rice, Steven F.; Coker, Eric N.; Stewart, Constantine A.; Kemp, Richard K.; Pickett, Lyle M.

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

More Details

Soot formation in diesel combustion under high-EGR conditions

Idicheria, Cherian I.; Pickett, Lyle M.

Experiments were conducted in an optically accessible constant-volume combustion vessel to investigate soot formation at diesel combustion conditions - in a high exhaust-gas recirculation (EGR) environment. The ambient oxygen concentration was decreased systematically from 21% to 8% to simulate a wide range of EGR conditions. Quantitative measurements of in-situ soot in quasi-steady n-heptane and No.2 diesel fuel jets were made by using laser extinction and planar laser-induced incandescence (PLII) measurements. Flame lift-off length measurements were also made in support of the soot measurements. At constant ambient temperature, results show that the equivalence ratio estimated at the lift-off length does not vary with the use of EGR, implying an equal amount of fuel-air mixing prior to combustion. Soot measurements show that the soot volume fraction decreases with increasing EGR. The regions of soot formation are effectively 'stretched out' to longer axial and radial distances from the injector with increasing EGR, according to the dilution in ambient oxygen. However, the axial soot distribution and location of maximum soot collapses if plotted in terms of a 'flame coordinate', where the relative fuel-oxygen mixture is equivalent. The total soot in the jet cross-section at the maximum axial soot location initially increases and then decreases to zero as the oxygen concentration decreases from 21% to 8%. The trend is caused by competition between soot formation rates and increasing residence time. Soot formation rates decrease with decreasing oxygen concentration because of the lower combustion temperatures. At the same time, the residence time for soot formation increases, allowing more time for accumulation of soot. Increasing the ambient temperature above nominal diesel engine conditions leads to a rapid increase in soot for high-EGR conditions when compared to conditions with no EGR. This result emphasizes the importance of EGR cooling and its beneficial effect on mitigating soot formation. The effect of EGR is consistent for different fuels but soot levels depend on the sooting propensity of the fuel. Specifically, No.2 diesel fuel produces soot levels more than ten times higher than those of n-heptane.

More Details

Relationship between ignition processes and the lift-off length of diesel fuel jets

Pickett, Lyle M.; Siebers, Dennis L.; Idicheria, Cherian I.

The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization. Experiments were performed in the same optically-accessible combustion vessel as the previous lift-off research. The experimental results show that the ignition quality of a fuel affects lift-off. Fuels with shorter ignition delays generally produce shorter lift-off lengths. In addition, a cool flame is found upstream of, or near the same axial location as, the quasi-steady lift-off length, indicating that first-stage ignition processes affect lift-off. High-speed chemiluminescence imaging also shows that high-temperature self-ignition occasionally occurs in kernels that are upstream of, and detached from, the high-temperature reaction zone downstream, suggesting that the lift-off stabilization is not by flame propagation into upstream reactants in this instance. Finally, analysis of the previous lift-off length database shows that the time-scale for jet mixing from injector-tip orifice to lift-off length collapses to an Arrhenius-type expression, a common method for describing ignition delay in diesel sprays. This Arrhenius-based lift-off length correlation shows comparable accuracy as a previous power-law fit of the No.2 diesel lift-off length database.

More Details

Jet-wall interaction effects on diesel combustion and soot formation

Pickett, Lyle M.

The effects of wall interaction on combustion and soot formation processes of a diesel fuel jet were investigated in an optically-accessible constant-volume combustion vessel at experimental conditions typical of a diesel engine. At identical ambient and injector conditions, soot processes were studied in free jets, plane wall jets, and 'confined' wall jets (a box-shaped geometry simulating secondary interaction with adjacent walls and jets in an engine). The investigation showed that soot levels are significantly lower in a plane wall jet compared to a free jet. At some operating conditions, sooting free jets become soot-free as plane wall jets. Possible mechanisms to explain the reduced or delayed soot formation upon wall interaction include an increased fuel-air mixing rate and a wall-jet-cooling effect. However, in a confined-jet configuration, there is an opposite trend in soot formation. Jet confinement causes combustion gases to be redirected towards the incoming jet, causing the lift-off length to shorten and soot to increase. This effect can be avoided by ending fuel injection prior to the time of significant interaction with redirected combustion gases. For a fixed confined-wall geometry, an increase in ambient gas density delays jet interaction, allowing longer injection durations with no increase in soot. Jet interaction with redirected combustion products may also be avoided using reduced ambient oxygen concentration because of an increased ignition delay. Although simplified geometries were employed, the identification of important mechanisms affecting soot formation after the time of wall interaction is expected to be useful for understanding these processes in more complex and realistic diesel engine geometries.

More Details

Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments

Proposed for publication in Combustion and Flame.

Musculus, Mark P.; Pickett, Lyle M.

Laser-extinction diagnostics can provide spatially and temporally resolved measurements of attenuation from combustion-generated soot within the path of the beam. When laser-extinction techniques are utilized in high-pressure combustion environments, however, a number of complications may be encountered that are not present in low-pressure environments. Several of these experimental difficulties were investigated in diesel engine environments, and solutions that facilitated acquisition of reliable laser-extinction data were demonstrated. Beam steering due to refractive index gradients within the combusting gases was observed, and a full-angle beam divergence of over 100 mrad was measured. A spatial-filtering scheme was employed to reduce the collection of forward-scattered light and background combustion luminosity while ensuring full collection of the steered beam. To further reject combustion luminosity, a narrow-bandpass laser-line filter was employed, after diffusing the transmitted light sufficiently to avoid the effects of significant spatial non-uniformities of the filter. As the windows were subjected to thermal and mechanical stresses, dynamic etaloning effects due to the photoelastic properties of synthetic fused silica were observed. Dynamic changes in the polarization of the exit beam were also observed, as stress-induced birefringence in the windows caused dynamic phase retardation of the transmitted beam. Although these photoelastic effects could not be eliminated, they were mitigated by introducing curvature to the wavefronts in the laser-extinction beam and using polarization-insensitive elements in the detection optics. Soot deposits on window surfaces were removed ablatively using a coaxial, high-energy, pulsed Nd:YAG laser beam.

More Details
85 Results
85 Results